NITROAROMATIC COMPOUND SENSING APPLICATION OF HEXA-ARMED DANSYL END-CAPPED POLY(epsilon-CAPROLACTONE) STAR POLYMER WITH PHOSPHAZENE CORE

Hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core (N3P3-(PCL-Dansyl)6) was prepared in a two-step synthetic procedure including ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and esterification reactions. The obtained fluorescence-active polymer was employed as a fluorescent probe towards certain nitroaromatic compounds (2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitrotoluene, 3-nitrotoluene, 2,4,6-trinitrophenol (picric acid), 2,4-dinitrophenol, 4-nitrophenol, and 1,2-dinitrobenzene). Fluorescence intensity of N3P3-(PCL-Dansyl)6 was decreased gradually upon the addition of nitroaromatic compounds and the highest quenching efficiency was found to be 100% with TNT. Besides, N3P3-(PCL-Dansyl)6 gave exceptionally selective response toward nitroaromatic compounds, even in the presence of toxic metal cations such as Pb2+, Co2+, Hg2+, Mn2+, Cd2+ and Zn2+.

___

  • Ju K-S, Parales RE. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiology and Molecular Biology Reviews. 2010, 74 (2): 250-72. DOI: 10.1128/mmbr.00006-10.
  • Yang X, Wang J, Su D, Xia Q, Chai F, Wang C, Qu F. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Transactions. 2014, 43 (26): 10057-63. DOI: 10.1039/C4DT00490F.
  • Dasary SSR, Senapati D, Singh AK, Anjaneyulu Y, Yu H, Ray PC. Highly Sensitive and Selective Dynamic Light-Scattering Assay for TNT Detection Using p-ATP Attached Gold Nanoparticle. ACS Applied Materials & Interfaces. 2010, 2 (12): 3455-60. DOI: 10.1021/am1005139.
  • Shanmugaraju S, Joshi SA, Mukherjee PS. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry. 2011, 21 (25): 9130-8. DOI: 10.1039/C1JM10406C.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for 2,4,6-Trinitrotoluene (TNT). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • Roy B, Bar AK, Gole B, Mukherjee PS. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. The Journal of Organic Chemistry. 2013, 78 (3): 1306-10. DOI: 10.1021/jo302585a.
  • Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI. Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode. Electroanalysis. 2009, 21 (16): 1786-91. DOI: 10.1002/elan.200904622.
  • Pedrosa VdA, Codognoto L, Avaca LA. Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. Journal of the Brazilian Chemical Society. 2003, 14: 530-5.
  • Hu S, Xu C, Wang G, Cui D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta. 2001, 54 (1): 115-23. DOI: http://dx.doi.org/10.1016/S0039-9140(00)00658-5.
  • Lipczynska-Kochany E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere. 1991, 22 (5): 529-36. DOI: http://dx.doi.org/10.1016/0045-6535(91)90064-K.
  • Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta. 2009, 79 (5): 1197-203. DOI: http://dx.doi.org/10.1016/j.talanta.2009.02.051.
  • Chen J-C, Shih J-L, Liu C-H, Kuo M-Y, Zen J-M. Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry. 2006, 78 (11): 3752-7. DOI: 10.1021/ac060002n.
  • Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Mullen K. Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chemical Communications. 2011, 47 (4): 1234-6. DOI: 10.1039/C0CC03659E.
  • Sun X, Wang Y, Lei Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews. 2015, 44 (22): 8019-61. DOI: 10.1039/C5CS00496A.
  • Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society. 2008, 130 (36): 12095-101. DOI: 10.1021/ja803262w.
  • Li D, Li H, Liu M, Chen J, Ding J, Huang X, Wu H. A Novel D-π-A Conjugated Polymer Chemosensor Based on Benzo[c][1,2,5]selenadiazole for Highly Selective and Sensitive Recognition of Mercury (II) Ions. Macromolecular Chemistry and Physics. 2014, 215 (1): 82-9. DOI: 10.1002/macp.201300542.
  • Liu Y, Miao Q, Zhang S, Huang X, Zheng L, Cheng Y. A Fluorescent Chemosensor for Transition-Metal Ions Based on Optically Active Polybinaphthyl and 2,2′-Bipyridine. Macromolecular Chemistry and Physics. 2008, 209 (7): 685-94. DOI: 10.1002/macp.200700460.
  • Gorur M, Doganci E, Yilmaz F, Isci U. Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. Journal of Applied Polymer Science. 2015, 132 (32): n/a-n/a. DOI: 10.1002/app.42380.
  • Silva AJC, Silva Jr JG, Alves Jr S, Tonholo J, Ribeiro AS. Dansyl-based fluorescent films prepared by chemical and electrochemical methods: cyclic voltammetry, afm and spectrofluorimetry characterization. Journal of the Brazilian Chemical Society. 2011, 22: 1808-15.
  • Wanichacheva N, Watpathomsub S, Lee VS, Grudpan K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15 (3): 1798.
  • Wanichacheva N, Kumsorn P, Sangsuwan R, Kamkaew A, Lee VS, Grudpan K. A new fluorescent sensor bearing three dansyl fluorophores for highly sensitive and selective detection of mercury(II) ions. Tetrahedron Letters. 2011, 52 (46): 6133-6. DOI: http://dx.doi.org/10.1016/j.tetlet.2011.09.033.
  • Murariu M, Buruiana EC. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers. 2015, 18 (2): 118-28. DOI: 10.1080/15685551.2014.971391.
  • Buruiana EC, Chibac AL, Buruiana T. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry. 2010, 213 (2–3): 107-13. DOI: http://dx.doi.org/10.1016/j.jphotochem.2010.05.008.
  • Hadjichristidis N. Synthesis of miktoarm star (μ-star) polymers. Journal of Polymer Science Part A: Polymer Chemistry. 1999, 37 (7): 857-71. DOI: 10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P.
  • Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science. 2009, 34 (9): 852-92. DOI: http://dx.doi.org/10.1016/j.progpolymsci.2009.04.006.
  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chemical Reviews. 2016, 116 (12): 6743-836. DOI: 10.1021/acs.chemrev.6b00008.
  • Aydin M, Uyar T, Tasdelen MA, Yagci Y. Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. Journal of Polymer Science Part A: Polymer Chemistry. 2015, 53 (5): 650-8. DOI: 10.1002/pola.27487.
  • Gorur M, Yilmaz F, Kilic A, Demirci A, Ozdemir Y, Kosemen A, Eren San S. Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene end-capped poly(ε-caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (16): 3668-82. DOI: 10.1002/pola.24151.
  • Gorur M, Yilmaz F, Kilic A, Sahin ZM, Demirci A. Synthesis of pyrene end-capped A6 dendrimer and star polymer with phosphazene core via “click chemistry”. Journal of Polymer Science Part A: Polymer Chemistry. 2011, 49 (14): 3193-206. DOI: 10.1002/pola.24756.
  • Doganci E, Gorur M, Uyanik C, Yilmaz F. Synthesis of AB3-type miktoarm star polymers with steroid core via a combination of “Click” chemistry and ring opening polymerization techniques. Journal of Polymer Science Part A: Polymer Chemistry. 2014, 52 (23): 3390-9. DOI: 10.1002/pola.27406.
  • Doganci E, Tasdelen MA, Yilmaz F. Synthesis of Miktoarm Star-Shaped Polymers with POSS Core via a Combination of CuAAC Click Chemistry, ATRP, and ROP Techniques. Macromolecular Chemistry and Physics. 2015, 216 (17): 1823-30. DOI: 10.1002/macp.201500199.
  • Eren O, Gorur M, Keskin B, Yilmaz F. Synthesis and characterization of ferrocene end-capped poly(ε-caprolactone)s by a combination of ring-opening polymerization and “click” chemistry techniques. Reactive and Functional Polymers. 2013, 73 (1): 244-53. DOI: http://dx.doi.org/10.1016/j.reactfunctpolym.2012.10.009.
  • Wu Z-M, Liang H, Lu J, Deng W-L. Miktoarm star copolymers via combination of RAFT arm-first technique and aldehyde–aminooxy click reaction. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (15): 3323-30. DOI: 10.1002/pola.24116.
  • Rele SM, Cui W, Wang L, Hou S, Barr-Zarse G, Tatton D, Gnanou Y, Esko JD, Chaikof EL. Dendrimer-like PEO Glycopolymers Exhibit Anti-Inflammatory Properties. Journal of the American Chemical Society. 2005, 127 (29): 10132-3. DOI: 10.1021/ja0511974.
  • de Almeida AKA, Dias JMM, Silva AJC, Navarro M, Junior SA, Tonholo J, Ribeiro AS. Synthesis and characterization of a dansyl-based fluorescent conjugated polymer. Synthetic Metals. 2013, 171: 45-50. DOI: http://dx.doi.org/10.1016/j.synthmet.2013.03.015.
  • Tang M, Huang J, Weng X, Yang L, Liu M, Zhou M, Wang X, Gao J, Yi W, Zeng W, Sun L, Cao Y. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection. Apoptosis. 2015, 20 (3): 410-20. DOI: 10.1007/s10495-014-1075-z.
  • Zeng W, Miao W, Kabalka G, Puil ML, Biggerstaff J, Townsend D. Design, synthesis, and biological evaluation of a dansyled amino acid derivative as an imaging agent for apoptosis. Tetrahedron Letters. 2008, 49 (45): 6429-32. DOI: http://dx.doi.org/10.1016/j.tetlet.2008.08.091.