Salvadora persica Extract-laden Jellyfish Collagen Hybrid Constructs for Periodontal Tissue Regeneration

Considerable effort in the field of periodontal tissue engineering has been expended in the construction of advanced biomatrix for the treatment of periodontal diseases caused by poor oral hygiene, malnutrition, genetic factors, and systemic disorders. With this in mind, the ultimate goal of this investigation is to fabricate sophisticated scaffolds using jellyfish collagen (JC) and aqueous Salvadora persica (Miswak) extracts. Rhizostoma pulmo species JC was isolated and characterized in depth. Miswak was extracted using two different methods. The extraction yield was calculated to be 14.2 ± 0.9 % and 17.1 ± 0.4 % for the Method I and II, respectively. gas chromatography-mass spectroscopy (GC-MS) results revealed the extract to be composed of 1,8-cineole (49.3 %), benzyl nitrile (36.2 %), benzyl isothiocyanate (5.9 %), limonene (2.4 %), eugenol (0.8 %) and palmitic acid (0.3 %). Total phenolic content and antioxidant capacities of the extracts were also determined by spectrophotometrically. Human periodontal ligament fibroblast cells were isolated and expanded. Cell viability on JC and miswak extract-laden JC scaffolds was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Microarchitectures of the JC, 0.05 and 0.1% miswak extract-laden JC scaffolds and also cellular behaviors on these surfaces were evaluated by scanning electron microscopy (SEM) analysis. This study suggests that miswak extract-laden JC scaffolds would present new opportunities for periodontal tissue engineering.

___

  • Inanç B, Arslan YE, Seker S, Elçin AE, Elçin YM. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide- co -glycolide) nanofibrous membrane scaffolds. J Biomed Mater Res Part A [Internet]. 2009 Jun;90A(1):186–95. Available from: http://doi.wiley.com/10.1002/jbm.a.32066
  • Sokos D, Everts V, de Vries TJ. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res [Internet]. 2015 Apr;50(2):152–9. Available from: http://doi.wiley.com/10.1111/jre.12197
  • Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, et al. Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues. J Dent Res [Internet]. 2014 Dec 19;93(12):1203–11. Available from: http://journals.sagepub.com/doi/10.1177/0022034514540682
  • Özdoğan AI, İlarslan YD, Kösemehmetoğlu K, Akca G, Kutlu HB, Comerdov E, et al. In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm [Internet]. 2018 Oct;550:470–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517318306446
  • Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol [Internet]. 2014 Jan;35(1):3–11. Available from: http://dx.doi.org/10.1016/j.it.2013.09.001
  • Han J, Menicanin D, Gronthos S, Bartold P. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J [Internet]. 2014 Jun;59(SUPPL. 1):117–30. Available from: http://doi.wiley.com/10.1111/adj.12100
  • Chahal S, Hussain FSJ, Kumar A, Rasad MSBA, Yusoff MM. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem Eng Sci [Internet]. 2016 Apr;144:17–29. Available from: http://dx.doi.org/10.1016/j.ces.2015.12.030
  • Chen F-M, Zhao Y-M, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv [Internet]. 2012 May;30(3):658–72. Available from: http://dx.doi.org/10.1016/j.biotechadv.2011.11.005
  • Inanc B, Elcin AE, Elcin YM. Osteogenic Induction of Human Periodontal Ligament Fibroblasts Under Two- and Three-Dimensional Culture Conditions. Tissue Eng [Internet]. 2006 Feb;12(2):257–66. Available from: https://www.liebertpub.com/doi/10.1089/ten.2006.12.257
  • Qasim SB, Delaine-Smith RM, Fey T, Rawlinson A, Rehman IU. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater [Internet]. 2015 Sep;23:317–28. Available from: http://dx.doi.org/10.1016/j.actbio.2015.05.001
  • Wu C, Zhou Y, Lin C, Chang J, Xiao Y. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater [Internet]. 2012 Oct;8(10):3805–15. Available from: http://dx.doi.org/10.1016/j.actbio.2012.06.023
  • Hatayama T, Nakada A, Nakamura H, Mariko W, Tsujimoto G, Nakamura T. Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2017 Oct;124(4):348–54. Available from: https://doi.org/10.1016/j.oooo.2017.05.471
  • Kuttappan S, Mathew D, Nair MB. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Int J Biol Macromol [Internet]. 2016 Dec;93:1390–401. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.06.043
  • Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, et al. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Mater Sci Eng C [Internet]. 2018 Oct;91:236–46. Available from: https://doi.org/10.1016/j.msec.2018.04.101
  • Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, et al. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater [Internet]. 2014 Feb;10(2):883–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706113005394
  • Jongjareonrak A, Benjakul S, Visessanguan W, Nagai T, Tanaka M. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chem [Internet]. 2005 Dec;93(3):475–84. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0308814604007666
  • Pustlauk W, Paul B, Gelinsky M, Bernhardt A. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC. Mater Sci Eng C [Internet]. 2016 Jul;64:190–8. Available from: http://dx.doi.org/10.1016/j.msec.2016.03.081
  • Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Colloids Surfaces B Biointerfaces [Internet]. 2017 Jun;154:160–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0927776517301522
  • Derkus B, Arslan YE, Bayrac AT, Kantarcioglu I, Emregul KC, Emregul E. Development of a novel aptasensor using jellyfish collagen as matrix and thrombin detection in blood samples obtained from patients with various neurodisease. Sensors Actuators B Chem [Internet]. 2016 Jun;228:725–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925400516300958
  • Putra ABN, Nishi K, Shiraishi R, Doi M, Sugahara T. Jellyfish collagen stimulates maturation of mouse bone marrow-derived dendritic cells. J Funct Foods [Internet]. 2015 Apr;14:308–17. Available from: http://dx.doi.org/10.1016/j.jff.2015.02.008
  • Efe B, Galata YF, Arslan YE. Assessment of the Cytotoxicity of Melia azedarach L. Extracts on Human Adipose-derived Mesenchymal Stem Cells. Hacettepe J Biol Chem. 2018;46(1):121–8
  • Khan H. Medicinal Plants in Light of History. J Evid Based Complementary Altern Med [Internet]. 2014 Jul;19(3):216–9. Available from: http://journals.sagepub.com/doi/ 10.1177/2156587214533346
  • Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn Rev [Internet]. 2012;6(11):1–5. Available from: http://www.phcogrev.com/text.asp?2012/6/11/1/95849
  • Farag MA, Fahmy S, Choucry MA, Wahdan MO, Elsebai MF. Metabolites profiling reveals for antimicrobial compositional differences and action mechanism in the toothbrushing stick “miswak” Salvadora persica. J Pharm Biomed Anal [Internet]. 2017 Jan;133:32–40. Available from: http://dx.doi.org/10.1016/j.jpba.2016.11.018
  • Halawany HS. A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent J [Internet]. 2012 Apr;24(2):63–9. Available from: http://dx.doi.org/10.1016/j.sdentj.2011.12.004
  • Abhary M, Al-Hazmi A-A. Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene. J Taibah Univ Sci [Internet]. 2016 Oct 16;10(4):513–20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1658365515001661
  • Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Acid Reagents. Am J Enol Vitic. 1965;16(3):144–58.
  • Apak R, Güçlü K, Özyürek M, Çelik SE. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta [Internet]. 2008 Apr 21;160(4):413–9. Available from: http://link.springer.com/10.1007/s00604-007-0777-0
  • Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials [Internet]. 2006 Feb;27(5):724–34. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961205005910
  • Kaczmarek B, Sionkowska A, Stojkovska J. Scaffolds based on chitosan and collagen with glycosaminoglycans cross- linked by tannic acid. Polym Test [Internet]. 2018 Jul;65:163–8. Available from: https://doi.org/10.1016/j.polymertesting.2017.11.026
  • Mohamed SA, Khan JA. Antioxidant capacity of chewing stick miswak Salvadora persica. BMC Complement Altern Med [Internet]. 2013 Dec 21;13(40):1–6. Available from: BMC Complementary and Alternative Medicine
  • Chelli-Chentouf N, Tir Touil Meddah A, Mullié C, Aoues A, Meddah B. In vitro and in vivo antimicrobial activity of Algerian Hoggar Salvadora persica L. extracts against microbial strains from children’s oral cavity. J Ethnopharmacol [Internet]. 2012 Oct;144(1):57–66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378874112005508
  • Noumi E, Snoussi M, Trabelsi N, Hajlaoui H, Ksouri R, Valentin E, et al. Antibacterial, anticandidal and antioxidant activities of Salvadora persica and Juglans regia L. extracts. J Med Plants Res. 2011 Jul 1;5(17):4138–46.
  • Naeini A, Jalayer Naderi N, Shokri H. Analysis and in vitro anti- Candida antifungal activity of Cuminum cyminum and Salvadora persica herbs extracts against pathogenic Candida strains. J Mycol Med [Internet]. 2014 Mar;24(1):13–8. Available from: http://dx.doi.org/10.1016/j.mycmed.2013.09.006
  • Sofrata A, Santangelo EM, Azeem M, Borg-Karlson A-K, Gustafsson A, Pütsep K. Benzyl Isothiocyanate, a Major Component from the Roots of Salvadora Persica Is Highly Active against Gram-Negative Bacteria. Heimesaat MM, editor. PLoS One [Internet]. 2011 Aug 1;6(8):e23045. Available from: https://dx.plos.org/10.1371/journal.pone.0023045
  • Daferera DJ, Ziogas BN, Polissiou MG. GC-MS Analysis of Essential Oils from Some Greek Aromatic Plants and Their Fungitoxicity on Penicillium digitatum. J Agric Food Chem [Internet]. 2000 Jun;48(6):2576–81. Available from: http://pubs.acs.org/doi/abs/10.1021/jf990835x
  • Taha E, Mariod A, Abouelhawa S, El-Geddawy M, Sorour M, Matthäus B. Antioxidant activity of extracts from six different Sudanese plant materials. Eur J Lipid Sci Technol [Internet]. 2010 Nov;112(11):1263–9. Available from: http://doi.wiley.com/10.1002/ejlt.201000326
  • Song E, Yeon Kim S, Chun T, Byun H-J, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials [Internet]. 2006 May;27(15):2951–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961206000147
  • Rehakova M, Bakos D, Vizarova K, Soldan M, Jurickova M. Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking. J Biomed Mater Res [Internet]. 1996 Mar;30(3):369–72. Available from: http://doi.wiley.com/10.1002
  • Tronci G, Grant CA, Thomson NH, Russell SJ, Wood DJ. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels. J R Soc Interface [Internet]. 2014 Nov 19;12(102):20141079. Available from: http://rsif.royalsocietypublishing.org/cgi/doi/10.1098/rsif.2014.1079
  • Tabatabaei F, Moezizadeh M, Javand F. Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells. J Conserv Dent [Internet]. 2015;18(4):315–20. Available from: http://www.jcd.org.in/text.asp?2015/18/4/315/159740
  • Şeker Ş, Elçin AE, Yumak T, Sınağ A, Elçin YM. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicol Vitr [Internet]. 2014 Dec;28(8):1349–58. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0887233314001313
  • Zhan D, Guo L, Zheng L. Inhibition of the receptor for advanced glycation promotes proliferation and repair of human periodontal ligament fibroblasts in response to high glucose via the NF-κB signaling pathway. Arch Oral Biol [Internet]. 2018 Mar;87:86–93. Available from: https://doi.org/10.1016/j.archoralbio.2017.12.011
  • Duan X, Ji M, Deng F, Sun Z, Lin Z. Effects of connective tissue growth factor on human periodontal ligament fibroblasts. Arch Oral Biol [Internet]. 2017 Dec;84(51):37–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003996917302819
  • O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials [Internet]. 2005 Feb;26(4):433–41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961204002017