Poly(o-aminobenzyl alcohol) Films with and without Organic Compound on AISI 316 Surface; Synthesis and the Corrosion Performances

In this work, it was studied to obtain the anticorrosive properties of polymer films (SS/PABA and SS/PABA-ORG) synthesized on stainless steel surface by adding an organic substance to aniline derived o-aminobenzyl alcohol monomer synthesis medium. Firstly, polymer coating bath was prepared by dissolving 0.15 M o -aminobenzyl alcohol monomer in electrolyte solvent containing acetonitrile and 0.15 M LiClO4. From this bath, poly (o-aminobenzyl alcohol) (PABA) film was synthesized in 30 segments by a cyclic voltammetry (CV) technique at a scanning rate of 50 mV/s at a potential range of -0.20/1.80 V on the AISI 316 (SS) working electrode in contrast to the platinum electrode. For the synthesis of organic structure doped polymer film (PABA-ORG), the same synthesis process was repeated by dissolving C21H27NO2(k) (ORG) at low concentration in the same bath. Corrosion performances of bare SS, SS/PABA and SS/PABA-ORG substrates were investigated using open circuit potential – time, anodic polarization and AC impedance techniques in corrosive solution. As a result of the study, it was observed that the organic additive added to the synthesis medium caused changes in the synthesis behavior of PABA. Corrosion performance tests showed that PABA and PABA-ORG films increased the corrosion protection performance of SS electrode and it was observed to reduce the corrosion rate of SS electrode.

___

  • 1. Perez N., Electrochemistry and Corrosion Science, Kluwer Academic Publishers, 2004, ISBN: 1-4020-7744-0
  • 2. Creus J, Mazille H, Idrissi H, Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf. Coat. Technol., 2000; 130; 224–232. https://doi.org/10.1016/S0257-8972(99)00659-3.
  • 3. Sohi MH, Jalali M, Study of the corrosion properties of zinc-nickel alloy electrodeposits before and after chromating. J. Mater. Process. Tech. 2003; 138: 63-66, https://doi:10.1016/S0924-0136(03)00050-5.
  • 4. Toprak Doşlü S, Doğru Mert B, Yazıcı B, Polyindole top coat on TiO2 sol–gel films for corrosion protection of steel. Corros. Sci. 2013; 66(8): 51-58, http://dx.doi.org/10.1016/j.corsci.2012.08.067.
  • 5. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D, Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res. 2014; 11(4): 473–494, https://doi:10.1007/s11998-014-9586-7.
  • 6. Ates M, A review on conducting polymer coatings for corrosion protection. J Adhes. Sci. Technol., 2016; 30(14): 1510–1536, https://doi.org/10.1080/01694243.2016.1150662.
  • 7. González MB, Saidman SB, Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention. Corros. Sci., 2011; 53(1): 276–282, https://doi.org/10.1016/j.corsci.2010.09.021.
  • 8. Jadhav N, Gelling VJ, Synthesis and Characterization of Micaceous Iron Oxide/Polypyrrole Composite Pigments and Their Application for Corrosion Protection of Cold Rolled Steel. Corrosion. 2014;70 (5):464–474, https://doi.org/10.5006/0980.
  • 9. Bereket G, Hur E. The Corrosion Protection of Mild Steel by Single Layered Polypyrrole and Multilayered Polypyrrole/Poly(5-amino-1-naphthol) Coatings. Prog. Org. Coat. 2009; 65 (1):116–124, https://doi.org/10.1016/j.porgcoat.2008.10.005.
  • 10. Bajat JB, Maksimovic MD, Miskovic-Stankovic VB, Zec S, Electrodeposition and characterization of Zn-Ni alloys as sublayers for epoxy coating deposition. J. Appl. Electrochem. 2001; 31: 355-361, https://doi.org/10.1023/A:101758001.
  • 11. Ozyilmaz AT, Avsar B, Ozyilmaz G, Karahan IH, Camurcu T, Colak F, Different copolymer films on ZnFeCo particles: Synthesis and anticorrosion properties. Appl. Surf. Sci. 2014; 318: 262-268, https://doi:10.1016/j.apsusc.2014.04.177.
  • 12. Ozyilmaz AT, Akdag A, Karahan IH, Ozyilmaz G, The influence of polyaniline (PANI) coating on corrosion behaviour of zinc–cobalt coated carbon steel electrode. Prog. Org. Coat. 2013; 76(6): 993-997, http://dx.doi.org/10.1016/j.porgcoat.2012.10.020.
  • 13. Bagherzadeh M, Haddadi H, Iranpour M, Electrochemical evaluation and surface study of magnetite/PANI nanocomposite for carbon steel protection in 3.5 % NaCl. Prog. Org. Coat. 2016; 101: 149-160, https://doi.org/10.1016/j.porgcoat.2016.08.011.
  • 14. Ozyilmaz AT, Aydin AE, Akdag A, Anticorrosive properties with catalytic behaviour of primer PANI film and top PPy coating synthesised in presence of novel norephedrine based amino alcohol compound. T. I. Met. Finis. 2014; 92(1): 34-40, http://doi:10.1179/0020296713z.000000000134.
  • 15. Lorenz WJ, Mansfeld F, Determination of corrosion rates by electrochemical DC and AC methods. Corros. Sci. 1981; 21: 647–672, http://doi:10.1016/0010-938x(81)90015-9.
  • 16. Mansfeld F, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer-coatings. Appl. Electrochem. 1995; 25: 187-202, http://doi:10.1007/bf00262955.
  • 17. Walter GW, A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci., 1986; 26(9): 681-703, http://doi:10.1016/0010-938x(86)90033-8.
  • 18. Ozyilmaz AT, Ozyilmaz G, Yigitoglu O, Synthesis and characterization of poly(aniline) and poly(o-anisidine) films in sulphamic acid solution and their anticorrosion properties. Prog. Org. Coat. 2010; 67: 28-37. http://doi:10.1016/j.porgcoat.2009.09.010.