FARKLI CİHAZLARLA ÜÇ BOYUTTA ELDE EDİLEN VERİLERİN MADENCİLİK ÇALIŞMALARINDA KULLANIMI

Madencilik çalışmalarında üç boyutlu yüzeylerin ve verilerin elde edilmesi proje hassasiyeti ve güvenilirliği açısından büyük önem arz etmektedir. Teknolojik gelişmelerle birlikte bu gibi çalışmalar daha kolay hale gelebilmektedir. Stabilite çalışmaları, madencilik haritalarının çıkarılması, hacim hesabı ve benzeri çalışmalarda, üç boyutta elde edilen veriler günümüz teknolojileri vasıtasıyla kullanılmaktadır. Bu veriler açık veya yeraltı işletmesi şeklinde yürütülen maden sahalarında insansız hava araçları (İHA), uydu verileri, yersel ölçümler, radar veya benzeri yöntemlerle elde edilmektedir. Bu çalışmada bu verilerin elde edilme yöntemlerini, madencilikte çeşitli alanlardaki kullanımlarını ve önemi hakkında değerlendirmeler yapılmıştır.

THE USE OF DATA OBTAINED IN THREE DIMENSIONS WITH DIFFERENT DEVICES IN MINING STUDIES

Obtaining three-dimensional surfaces and data in mining works is of great importance in terms of project precision and reliability. With technological developments, such studies can become easier. The data obtained in three dimensions are used by today's technologies in stability studies, mining maps, volume calculation and similar studies. These data are obtained by unmanned aerial vehicles (UAV), satellite images, terrestrial measurements, radar or similar methods in mine sites operated as open or underground operations. In this study, evaluations were made about the methods of obtaining these data, their use in various fields in mining and their importance.

___

  • [1] Kekeç, B., Bilim, N., Dündar, S., and Ghiloufi, D. (2018). Madencilik Faaliyetlerinde İnsansız Hava Araçlarının (İHA) Kullanımı. 2. Uluslararası Bilim. Çalışmalarda Yenilikçi Yaklaşımlar Sempozyumu (ISAS 2018), 174–178.
  • [2] Villi, O. and Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi. 4 (2), 73–100.
  • [3] Özcan, O. (2017). İnsansız Hava Aracı (İHA) ile Farklı Yüksekliklerden Üretilen Sayısal Yüzey Modellerinin (SYM) Doğruluk Analizi. Journal of Engineering and Earth Science. 2 (1), 1–7.
  • [4] Gül, Y. (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey. 62 99–112.
  • [5] Kun, M. and Özcan, B. (2019). Maden ocaklarında insansız hava aracı kullanımı: örnek bir saha çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 21 (2), 554–564.
  • [6] Kun, M. and Güler, Ö. (2019). İnsansız Görüntüleme Sistemleri ile Elde Edilen Sayısal Yüzey Modellerinin Mermer Madenciliğinde Kullanımı. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering. 21 (63), 1005–1013.
  • [7] Şener, E. (2019). İnsansız Hava Araçları Kullanılarak Olası Kaya Düşmelerinin Coğrafi Bilgi Sistemleri Tabanlı 3D Modellenmesi: Kasımlar Köyü (Isparta-Türkiye) Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 23 (2), 419–426. [8] Kabadayı, A. (2022). Açık Maden Ocağında Hacim Hesabı için GNSS ve İHA Ölçümlerinin Karşılaştırıldığı Bir Çalışma Örneği. Türkiye İnsansız Hava Araçları Dergisi. 4 (2), 52–57.
  • [9] Kabadayı, A. (2022). Maden Sahasının İnsansız Hava Aracı Yardımıyla Fotogrametrik Yöntemle Haritalanması. Türkiye İnsansız Hava Araçları Dergisi. 4 (1), 19–23.
  • [10] Yüksel, G. (2022). Use of Unmanned Aerial Vehicles in Open Mine Sites. Türkiye İnsansız Hava Araçları Dergisi. 4 (1), 29–37.
  • [11] Arrieta, M. (2022). UAV photogrammetry for particle size distribution (PSD) and rock fill characterization. GeoCalgary 2022 Reflecit. Resorces, 1–9.
  • [12] Can, F., Polat, A.B., and Akçay, Ö. (2022). Açık Maden Ocağının Fotogrametrik Yöntem ile Geometrik ve Spektral Analizi: Bigadiç Bor Maden İşletmesi Örneği. Afyon Kocatepe University Journal of Sciences and Engineering. 22 (1), 175–186.
  • [13] Ren, H., Zhao, Y., Xiao, W., and Hu, Z. (2019). A review of UAV monitoring in mining areas: current status and future perspectives. International Journal of Coal Science and Technology. 6 (3), 320–333.
  • [14] Ren, H., Zhao, Y., Xiao, W., Yang, X., Ding, B., and Chen, C. (2022). Monitoring potential spontaneous combustion in a coal waste dump after reclamation through unmanned aerial vehicle RGB imagery based on alfalfa aboveground biomass. Land Degradation and Development. 33 (15), 2728–2742.
  • [15] MAPEG (2022). "Maden ve Petrol İşleri Genel Müdürlüğü Harita Standartları", 15.12.2022, https://www.mapeg.gov.tr/Custom/MadenHarita.
  • [16] Netcad (2023). "MAPEG Haritaları", 17.03.2023, https://wiki.netcad.com.tr/display/HELP/MAPEG.
  • [17] Liu, X., Zhu, W., Lian, X., and Xu, X. (2023). Monitoring Mining Surface Subsidence with Multi-Temporal Three-Dimensional Unmanned Aerial Vehicle Point Cloud. Remote Sensing. 15 (2).
  • [18] Kweon, H., Seo, J. Il, and Lee, J.W. (2020). Assessing the applicability of mobile laser scanning for mapping forest roads in the republic of Korea. Remote Sensing. 12 (9), 1–14.
  • [19] Onargan, T. and Küçük, K. (2014). Maden Mühendisleri için Ölçme Tekniği. 4. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları No:312, İzmir.
  • [20] Pix4D (2023). "Drone-mapping streamlines surveys in mineral operations", 05.03.2023, https://www.pix4d.com/blog/drone-mapping-streamlines-surveys-in-mineral-production-operations/.
  • [21] Şahin, V. and Yılmaz, H.M. (2021). Hacim Hesaplarında İnsansız Hava Aracı (İHA) Verilerinin Kullanılabilirliğinin Araştırılması. Türkiye İnsansız Hava Araçları Dergisi. 3 (2), 36–48.
  • [22] Seki, M., Tiryakioğlu, İ., and Uysal, M. (2017). Farklı Veri Toplama Yöntemleriyle Yapılan Hacim Hesaplamalarının Karşılaştırılması. Geomatik Dergis. 2 (2), 106–111.
  • [23] Yakar, M., Yılmaz, H.M., and Mutluoğlu, Ö. (2009). Hacim Hesaplamalarında Laser Tarama ve Yersel Fotogrametrinin Kullanılması. 12. Türkiye Harit. Bilim. ve Tek. Kurult., TMMOB Harita ve Kadastro Mühendisleri Odası, Ankara. 1–5.
  • [24] Ozdogan, M.V. and Deliormanli, A.H. (2016). Monitoring of Landslide at Tuncbilek Open Pit Stripping Area with Terrestrial Laser Scanner and Optical Images. IOP Conf. Ser. Earth Environ. Sci.
  • [25] Turner, R.M., Bhagwat, N.P., Galayda, L.J., Knoll, C.S., Russell, E.A., and MacLaughlin, M.M. (2018). Geotechnical characterization of underground mine excavations from UAV-captured photogrammetric & thermal imagery. ARMA 18, 1–11.
  • [26] Karasaka, L. and Beg, A.A.R. (2021). Yersel Lazer Tarama Yöntemi ile Farklı Geometrik Yapıdaki Özelliklerin Modellenmesi. Geomatik. 6 (1), 54–60.
  • [27] Ozdogan, M. V and Deliormanli, A.H. (2022). Yersel Lazer Tarayıcıların Yeraltı Madencilik Faaliyetlerinde Kullanımı : Örnek bir Yeraltı Metalik Maden Uygulaması. MT Bilimsel. 1 (21), 13–19.
  • [28] Nguyen, L.Q., Dang, M.T., Bui, L.K., Ngoc, Q.B., and Tran, T.X. (2023). Application of Unmanned Aerial Vehicles for Surveying and Mapping in Mines: A Review. 1–22.
  • [29] Rocamora, B.M., Lima, R.R., Samarakoon, K., Rathjen, J., Gross, J.N., and Pereira, G.A.S. (2023). Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars. Drones. 7 (2), 1–26.
  • [30] Steenkamp, N.C., Goosen, S.L., and Bouwer, P.J. (2020). Satellite applications in diamond exploration and mine monitoring. Journal of the Southern African Institute of Mining and Metallurgy. 120 (10), 575–580.
  • [31] Bayer, B., Simoni, A., Schmidt, D., and Bertello, L. (2017). Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Engineering Geology. 226 (May), 20–32.
  • [32] Ostapenko, S.P. and Mesyats, S.P. (2022). Recovery Dynamics of Mining-Altered Natural Ecosystems by Satellite Data. Journal of Mining Science. 58 (5), 839–848. [33] Kotaridis, I. and Lazaridou, M. (2020). Satellite imagery segmentation in lignite mine areas. Eighth Int. Conf. Remote Sens. Geoinf. Environ., 1–15.
  • [34] Wan, Y., Zhong, Y., Ma, A., Hu, X., and Wei, L. (2023). Satellite‐air‐ground integrated multi‐source earth observation and machine learning processing brain for tailings reservoir monitoring and rapid emergency response. Land Degradation & Development. (November 2022), 1–19.
  • [35] Poyraz, F., Gül, Y., and Duymaz, B. (2020). Determination of deformations by using the PSI technique at a common dump site of three different open-pit marble mines in Turkey. TURKISH JOURNAL OF EARTH SCIENCES. 29 (6), 1004–1016.
  • [36] Sadavarte, P., Pandey, S., Maasakkers, J.D., Lorente, A., Borsdorff, T., Denier van der Gon, H., et al. (2021). Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science and Technology. 55 (24), 16573–16580.
  • [37] Antonielli, B., Sciortino, A., Scancella, S., Bozzano, F., and Mazzanti, P. (2021). Tracking deformation processes at the Legnica Glogow copper district (Poland) by satellite insar—i: Room and pillar mine district. Land. 10 (6), 1–20.
  • [38] Solari, L., Montalti, R., Barra, A., Monserrat, O., Bianchini, S., and Crosetto, M. (2020). Multi-temporal satellite interferometry for fast-motion detection: An application to salt solution mining. Remote Sensing. 12 (23), 1–21.
  • [39] Balaniuk, R., Isupova, O., and Reece, S. (2020). Mining and tailings dam detection in satellite imagery using deep learning. Sensors (Switzerland). 20 (23), 1–26.
  • [40] Kabuya, J.M., Simon, R., Carvalho, J., and Haviland, D. (2020). Numerical back-analysis of highwall instability in an open pit: a case study. Slope Stab. 2020, pp. 937–952.
  • [41] Collin, J.G., Stark, T.D., Lucarelli, A., Taylor, T.P., and Berg, R.R. (2021). Stability and Stress-Deformation Analyses of Reinforced Slope Failure at Yeager Airport. Journal of Geotechnical and Geoenvironmental Engineering. 147 (3), 1–11.
  • [42] Javankhoshdel, S., Cami, B., Yacoub, T., Ma, T., and Abolfazlzadeh, Y. (2021). Multi Modal failure mechanism in open pit mines using LEM and FEM approaches. Arma 21, 1–5.
  • [43] Bar, N., McQuillan, A., Graaf, P. de, and Ndlovu, X. (2022). Three-Dimensional Slope Stability Analysis for Late-Stage Slope Design Optimization Options Trade-off Studies at Venetia Diamond Mine. Slope Stab. 2022, Tucsonpp. 1–9.
  • [44] Bar, N., McQuillan, A., Ma, T., Wai, D., Hammah, R., Corkum, B., et al. (2023). A geotechnical evaluation of the Cumba Pit Slope Failure, Dominican Republic. IOP Conference Series: Earth and Environmental Science. 1124 (1), 1–12.
  • [45] Cobián, J.C., Bautista, M.M., Bar, N., and Hammah, R. (2022). 3D Limit Equilibrium Analysis and Risk Appraisal of Hondo Waste Rock 3D Limit Equilibrium Analysis and Risk Appraisal of Hondo Waste Rock Stockpile Designs. Rocscience Africa Conf. 2022, Accra, Ghanapp. 1–11.
  • [46] McQuillan, A. and Bar, N. (2023). The necessity of 3D analysis for open-pit rock slope stability studies : Theory and practice. Journal of the Southern African Institute of Mining and Metallurgy. 123–2 (February), 63–69.
  • [47] Bar, N. and McQuillan, A. (2018). 3D limit equilibrium slope stability analysis for anisotropic and faulted rock masses in Australian coal and iron ore mines. ISRM Int. Symp. - 10th Asian Rock Mech. Symp. ARMS 2018, Singapore.
  • [48] Bar, N. and Weekes, G. (2017). Directional Shear Strength Models in 2D And 3D Limit Equilibrium Analyses To Assess The Stability Of Anisotropıc Rock Slopes in The Pilbara Region Of Western Australia. Journal and News of the Australian Geomechanics Society. 52 (4), 91–104.
  • [49] McQuillan, A., Bar, N., and Yacoub, T. (2022). On the comparison of 2D and 3D stability analyses of an anisotropic slope. Evol. Geotech - 25 Years Innov., 295–306.
  • [50] Bar, N., Kostadinovski, M., Tucker, M., Byng, G., Rachmatullah, R., Maldonado, A., et al. (2020). Pit slope failure evaluation in near real time using UAV photogrammetry and 3D limit equilibrium analysis. Australian Geomechanics Journal. 55 (2), 33–47.
  • [51] Sertabipoğlu, Z., Özer, Ü., and Tunçdemİr, H. (2014). InSAR Verilerinin Madencilikte Kullanımı. 5. Uzak. Algilama-Cbs Sempozyumu (Uzal-Cbs 2014), İstanbul, 1–10.
  • [52] Li, Z., Wang, J., Li, L., Wang, L., and Liang, R.Y. (2015). A case study integrating numerical simulation and GB-InSAR monitoring to analyze flexural toppling of an anti-dip slope in Fushun open pit. Engineering Geology. 197 20–32.
  • [53] Ozdogan, M.V. and Deliormanli, A.H. (2018). Yersel Lazer Tarayıcı ile Yeraltı Galerisinde Meydana Gelen Deformasyonların Belirlenmesi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering. 20 (59), 663–675.
  • [54] Ozdogan, M.V. and Deliormanli, A.H. (2019). Landslide detection and characterization using terrestrial 3D laser scanning (LIDAR). Acta Geodynamica et Geomaterialia. 16 (4), 379–392. [55] Ćwiakała, P., Gruszczyński, W., Stoch, T., Puniach, E., Mrocheń, D., Matwij, W., et al. (2020). UAV applications for determination of land deformations caused by underground mining. Remote Sensing. 12 (11), 1–25.
  • [56] Puniach, E., Gruszczyński, W., Stoch, T., Mrocheń, D., Ćwiąkała, P., Sopata, P., et al. (2023). Determination of the coefficient of proportionality between horizontal displacement and tilt change using UAV photogrammetry. Engineering Geology. 312 (November 2022), 1–16.
  • [57] Lashgari, M. and Ozturk, C.A. (2022). Slope failure and stability investigations for an open pit copper mine in Turkey. Environmental Earth Sciences. 81 (5), 1–17.
  • [58] Li, J., Li, B., He, K., Gao, Y., Wan, J., Wu, W., et al. (2022). Failure Mechanism Analysis of Mining-Induced Landslide Based on Geophysical Investigation and Numerical Modelling Using Distinct Element Method. Remote Sensing. 14 (23), 6071.
  • [59] Zhang, Y., Lian, X., Ge, L., Liu, X., Du, Z., Yang, W., et al. (2022). Surface Subsidence Monitoring Induced by Underground Coal Mining by Combining DInSAR and UAV Photogrammetry. Remote Sensing. 14 (19), 1–14.
  • [60] Özdemir, M. (2021). Anizotropik Davranış Gösteren Metamorfik Kaya Kütlelerinde Şev Stabilitesi Analizleri, Doktor Tezi, Kütahya Dumlupınar Üniversitesi, Lisansüstü Eğitimi Enstitüsü, Kütahya. [61] Padró, J.-C., Cardozo, J., Montero, P., Ruiz-Carulla, R., Alcañiz, J.M., Serra, D., et al. (2022). Drone-Based Identification of Erosive Processes in Open-Pit Mining Restored Areas. Land. 11 (2), 1–13.
  • [62] Luo, M., Tian, Y., Zhang, S., Huang, L., Wang, H., Liu, Z., et al. (2022). Individual Tree Detection in Coal Mine Afforestation Area Based on Improved Faster RCNN in UAV RGB Images. Remote Sensing. 14 (21), 5545.
  • [63] Zhao, Y., Sun, B., Liu, S., Zhang, C., He, X., Xu, D., et al. (2021). Identification of mining induced ground fissures using UAV and infrared thermal imager: Temperature variation and fissure evolution. ISPRS Journal of Photogrammetry and Remote Sensing. 180 (August), 45–64.
  • [64] Andersen, T., Vinkovic, K., de Vries, M., Kers, B., Necki, J., Swolkien, J., et al. (2021). Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system. Atmospheric Environment: X. 12 (May), 100135. [65] Cao, D., Zhang, B., Zhang, X., Yin, L., and Man, X. (2023). Optimization methods on dynamic monitoring of mineral reserves for open pit mine based on UAV oblique photogrammetry. Measurement. 207 (November 2022), 112364.