S-BANT MİKROŞERİT WİLKİNSON GÜÇ BÖLÜCÜ TASARIMI

Güç bölücü devreleri kablosuz haberleşme sistemlerinde yaygın olarak kullanılan pasif mikrodalga bileşenidir. Güç bölücü devre türlerinin içinde en bilineni Wilkinson güç bölücü devreleridir. Geleneksel Wilkinson güç bölücü devrelerinde, frekans spektrumda düşük frekans değerlerine gidildikçe dalga boyunun büyümesinden kaynaklı olarak boyut büyümektedir ve özellikle, L-, S-, C-bant frekans aralıklarında bu yapı oldukça büyük alan kaplamaktadır. Bundan kaynaklı olarak çeyrek dalga boyu (λ/4) iletim hatlarının boyutunun küçülmesine yönelik devre tasarım yapılarına ihtiyaç duyulmaktadır. Bu kapsamda S-bantta boyut olarak oldukça uzun olan λ/4 iletim hatlarının yerine eşlenik devre yapılarının oluşturulması amaçlanmıştır. Bu çalışmada S-bant uygulamalarına yönelik kompakt bir Wilkinson güç bölücü tasarımı, üretimi ve ölçümü hedeflenmiştir. Elde edilen ölçüm sonuçlarına göre 2-4 GHz frekans bandı içerisinde devrenin giriş ve çıkış yansıma kayıplarının -11 dB’den iyi olduğu ve araya girme kayıplarının ise -3.6 dB’den iyi olduğu görülmüştür. Ek olarak, çıkış portları arasındaki izolasyonun çalışma frekans bandı içerisinde -7.5 dB’den iyi olduğu ölçüm sonuçlarında elde edilmiştir. Önerilen güç bölücü yapısı kompakt boyutlarda, düşük maliyetli ve düşük kayıplı olması nedeniyle S-bant mikrodalga uygulamalarda kullanılabileceği düşünülmektedir.

S-BAND MICROSTRIP WILKINSON POWER DIVIDER DESIGN

Power divider circuits are passive microwave components commonly used in wireless communication systems. The most popular power divider circuit is known as Wilkinson power divider. In conventional Wilkinson power divider circuits, the wavelength and size increases as the frequency decreases and especially in the L-, S-, C-band frequency ranges, this structure covers a very large area. Therefore, circuit design structures are needed to reduce the size of quarter wavelength (λ/4) transmission lines. In this context, it is aimed to create conjugate circuit structures instead of (λ/4) transmission lines, which are quite long in size. In this study, it is aimed to design, fabricate and measure a compact Wilkinson power divider for S-band applications. According the measurement results input and output return loss of the circuit is obtained better than -11dB in the 2-4 GHz frequency band. The insertion loss is obtained better than -3.6 dB in the same frequency range. In addition, the isolation between the output ports is better than -7.5 dB in the operating frequency band. The proposed power divider structure can be used in S-band microwave applications due to its compact size, low cost and low loss.

___

  • [1] Pozar, D. M., (2005), Microwave Engineering. New York, NY, USA: Wiley,7.
  • [2] Liu, Y., Chen, W., Li, X. And Feng, Z. (2013), Design of compact dualband power dividers with frequency-dependent division ratios based on multisection coupled line, IEEE Compon., Packag., Manuf. Technol., 3, 467–475.
  • [3] Genc, A. and Baktur, R., (2011), Dual- and triple-band Wilkinson power dividers based on composite right- and left-handed transmission lines, IEEE Compon., Packag., Manuf. Technol., 3, 327–334.
  • [4] Chen, C.-F., Huang, T.-Y., Shen, T.-M. and Wu, R.-B. (2013), Design of miniaturized filtering power dividers for system-in-a-package, IEEE Compon., Packag., Manuf. Technol., 3,1663–1672.
  • [5] Wu, L.-S., Guo, Y.-X. and Mao, J.-F. (2013), Balanced-to-balanced Gysel power divider with bandpass filtering response, IEEE Trans. Microw. Theory Techn., 61, 4052–4062.
  • [6] Liu,Y., Xia, L. and Xu, R., (2012), A U-band Wilkinson type UWB power divider in LTCC technology, in Proc. Int. conf. Microw. Millim. Wave Technol., 2, 1–3.
  • [7] Ta, H. H. and Pham, A.-V., (2012), Compact Wilkinson power divider on multilayer organic substrate, in IEEE MTT-S Int. Microw. Symp. Dig., 1–3.
  • [8] He, Q., Liu, Y., Wu, Y. and Su, M., (2012), An unequal dual-band Wilkinson power divider with slow wave structure, in Proc. Asia-Pacific Microw. Conf., 968–970.
  • [9] Wu , Y. and Liu, Y., (2013), Compact 3–11 GHz UWB planar unequal power divider using two-section asymmetric coupled transmission lines and non-uniform microstrip, Electron. Lett., 49,1002–1003.
  • [10] Chen, W.-H., Liu, Y.-C., Li, X., Feng, Z.-H. and Ghannouchi, F. M., (2011), Design of reduced-size unequal power divider for dual-band operation with coupled lines, Electron. Lett., 47, 59–60.
  • [11] Tang, X. and Mouthaan, K., (2009), Analysis and design of compact two-way Wilkinson power dividers using coupled lines, in Proc. Asia-Pacific Microw. Conf., 1319–1322.
  • [12] Wang, J., Ni, J., Guo, Y.-X. and Fang, D., (2009), Miniaturized microstrip Wilkinson power divider with harmonic suppression, IEEE Microw. Wireless Compon. Lett., 19, 440–442.
  • [13] Cengiz, O., Kelekci, O., Arican, G. Ozbay, E. and Palamutcuogullari, O. (2011), Design of high power S-band GaN MMIC power amplifiers for WiMAX applications, in General Assembly and Scientific Symposium, 2011 XXXth URSI, 1–4.
  • [14] Hayati, M., Abdipour, A., Abdipour, A., (2015), A Wilkinson Power Divider with Harmonic Suppression and Size Reduction using High-Low Impedance Resonator Cells, Radioengineering, 24,137-141.
  • [15] Miao, C., Yang J. et al., (2014), Novel Sub-Miniaturized Wilkinson Power Divider Based on Small Phase Delay, IEEE Microwave and Wireless Components Letters, 24,662-664.
  • [16] Mirzavand R. et al., (2013), Compact Microstrip Wilkinson Power Dividers With Harmonic Suppression and Arbitrary Power Division Ratios, IEEE Transactions on Microwave Theory and Techniques, 61, 61-68.
  • [17] Wang, X., Sakagami, I. Mase, A. (2013), Generalized, Miniaturized, Dual-Band Wilkinson Power Divider with Series RLC Circuit, 2013 Asia-Pacific Microwave Conference Proceedings, 372-374.
  • [18] Rawat, K. Ghannouchi, F. (2009), A Design Methodology for Miniaturized Power Dividers Using Periodically Loaded Slow Wave Structure with Dual-Band Applications, IEEE Transactions on Microwave Theory and Techniques, 57, 3380-3388.
  • [19] Oraizi, H., Esfahlan,M. S. (2008), Miniaturization of Wilkinson Power Dividers by Using Defected Ground Structures, Progress in Electromagnetics Research Letters, 4, 113-120.
  • [20] He, J. Chen, D. Wang, B. Z. (2012), Miniaturized Microstrip Wilkinson Power Divider With EBG Structure, International Conf. on Microwave and Millimeter-Wave Technology (ICMMT), 4, 1-3.
  • [21] Mahardika, C., Nugroho, B. S., Syihabuddin, B., Prasetyo, A.D. and Nur, D.A., (2016), Modified Wilkinson Power Divider 1 to 4 at S-band as the part of a smart antenna for satellite tracking, telemetry, and command subsystem, 2016 International Conference on Control, Electronics, Renewable Energy and Communications.
  • [22] Phan, H. P., Vuong, T. P., Nguyen, T. T., Luong, M. H., Litsuka Y. and Hoang, M. H., (2015), Simple miniaturized Wilkinson power divider using a compact stub structure, 2015 International Conference on Advanced Technologies for Communication (ATC), 168-171.
  • [23] Chen, H.-H., Pang, Y.-H. (2011), A tri-band Wilkinson power divider utilizing coupled lines," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 25-28.