KATKILANDIRILMIŞ (Eu, Dy, Sb, Co, Tb) BARYUM TİTANAT SERAMİKLERİNİN (BaTiO3) DİELEKTRİK VE MANYETİK ÖZELLİKLERİNİN İNCELENMESİ

Bu çalışmada üstün piezoelektrik ve ferroelektrik özellik gösteren Baryum Titanat (BaTiO3) seramik tozları karıştırılmış oksit yöntemi ile üretilmiştir. Daha sonra eşit mol yüzdesinde Evropiyum (Eu), Disporsiyum (Dy), Antimon (Sb), Kobalt (Co) ve Terbiyum (Tb) elementleri katkı malzemesi olarak kullanılmış, katkılı BaTiO3 seramik tozları nano ve mikro ölçekte sentezlenmiştir. Bu toz karışımlarına soğuk pres yöntemiyle şekil verildikten sonra sinterleme işlemi uygulanmıştır. SEM, XRD ve XPS karakterizasyonları gerçekleştirilmiş, kapasitans ve manyetometri ölçümleri yapılmıştır. Sonuç olarak, oda sıcaklığında yarı iletken davranışa ve ferroelektrik özelliğe sahip nano boyutlu katkılı ve katkısız BaTiO3 seramik tozlar elde edilmiştir. Ayrıca gerçekleştirilen karakterizasyon sonuçlarında kullanılan katkı malzemeleri içinde en uygun katkı malzemesi Sb olarak tespit edilmiştir.

INVESTIGATION ON DIELECTRIC AND MAGNETIC PROPERTIES OF DOPED (Eu, Dy, Sb, Co, Tb) BARIUM TITANATE CERAMICS

In this study, barium titanate (BaTiO3) ceramic powders which have superior piezoelectric and ferroelectric properties were produced by mixed oxide method. Europium (Eu), Dysprosium (Dy), Antimony (Sb), Cobalt (Co) and Terbium (Tb) elements are used as dopant material in equal mole percent, and doped BaTiO3 ceramic powders were synthesized on nano and micro scale. These powder mixtures were shaped by cold press method and then sintered. SEM, XRD characterizations, and capacitance,and magnetometry measurements were performed. As a result, nano-sized doped and undoped BaTiO3 ceramic powders having semiconductor behavior and ferroelectric properties were obtained at room temperature. In addition, the most suitable dopant material was determined as Sb as a result of the characterization results.

___

  • [1] Jiang, B., Iocozzia, J., Zhao, L., Zhang, H., Harn, Y.-W., Chen, Y., Lin, Z., (2019), Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties, Chemical Society Reviews, 48 (4), 1194–1228.
  • [2] Ashwini, L.S., Sridhar, R., Bellad, S.S., (2017), Dielectric and magnetoelectric properties of Li-Mg ferrite: Barium titanate composites, Materials Chemistry and Physics, 200, 136–145.
  • [3] Petrović, M.M.V., Bobić, J.D., Banys, J., Stojanović, B.D., (2013), Electrical properties of antimony doped barium titanate ceramics, Materials Research Bulletin, 48 (10), 3766–3772.
  • [4] Morrison, F.D., Sinclair, D.C., West, A.R., (2001), Characterization of lanthanum‐doped barium titanate ceramics using impedance spectroscopy, Journal of the American Ceramic Society, 84 (3), 531–538.
  • [5] Lu, D., Toda, M., and Sugano, M., (2006), High‐permittivity double rare‐earth‐doped barium titanate ceramics with diffuse phase transition, Journal of the American Ceramic Society, 89 (10), 3112–3123.
  • [6] Rejab, N.A., Sreekantan, S., Razak, K.A., Ahmad, Z.A., (2011), Structural characteristics and dielectric properties of neodymium doped barium titanate, Journal of Materials Science: Materials in Electronics, 22 (2), 167–173.
  • [7] Sun, Q., Gu, Q., Zhu, K., Jin, R., Liu, J., Wang, J., Qiu, J., (2017), Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate, Scientific Reports, 7, 42274.
  • [8] Petrović, M.M.V., Grigalaitis, R., Ilic, N., Bobić, J.D., Dzunuzovic, A., Banys, J., Stojanović, B.D., (2017), Interdependence between structure and electrical characteristics in Sm-doped barium titanate, Journal of Alloys and Compounds, 724, 959–968.
  • [9] Ganguly, M., Rout, S.K., Woo, W.S., Ahn, C.W., Kim, I.W., (2013), Characterization of A-site deficient samarium doped barium titanate, Physica B: Condensed Matter, 411, 26–34.
  • [10] Cai, W., Fu, C., Gao, J., Deng, X., Chen, G., Lin, Z., (2012), Effect of samarium on the microstructure, dielectric and ferroelectric properties of barium titanate ceramics, Integrated Ferroelectrics, 140 (1), 92–103.
  • [11] Li, Y.-X., Yao, X., Wang, X.-S., Hao, Y.-B., (2012), Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen, Ceramics International, 38, S29–S32.
  • [12] Ben, L. and Sinclair, D.C., (2011), Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: The influence of strain, Applied Physics Letters, 98 (9), 92907.
  • [13] Paunović, V. and Živković, L., (2010), Influence of Rare-Earth Additives (La, Sm and Dy) on the Microstructure and Dielectric Properties of Doped BaTiO3 Ceramics, Science of Sintering, 42 (1), 69-79.
  • [14] Paunovic, V., Mitic, V. V, Prijic, Z., Zivkovic, L., (2014), Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics, Ceramics International, 40 (3), 4277–4284.
  • [15] Sun, Q., Gu, Q., Zhu, K., Wang, J., Qiu, J., (2016), Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders, Ceramics International, 42 (2), 3170–3176.
  • [16] Cernea, M., Galassi, C., Vasile, B.S., Ganea, P., Radu, R., Ghita, G., (2010), Electrical investigations of holmium-doped BaTiO3 derived from sol-gel combustion, Journal of Materials Research, 25 (6), 1057–1063.
  • [17] Mitic, V. V, Nikolic, Z.S., Pavlovic, V.B., Paunovic, V., Miljkovic, M., Jordovic, B., Zivkovic, L., (2010), Influence of rare‐earth dopants on barium titanate ceramics microstructure and corresponding electrical properties, Journal of the American Ceramic Society, 93 (1), 132–137.
  • [18] Jo, S.K., Park, J.S., Han, Y.H., (2010), Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3, Journal of Alloys and Compounds, 501 (2), 259–264.
  • [19] Hwang, J.H. & Han, Y.H., (2001), Dielectric properties of erbium doped barium titanate, Japanese Journal of Applied Physics, 40 (2R), 676.
  • [20] Li, Y., Hao, Y., Wang, X., Yao, X., (2010), Studies of dielectric properties of rare earth (Y, Gd, Yb) doped barium titanate sintered in pure nitrogen, Ferroelectrics, 407 (1), 134–139.
  • [21] Ismail, F.A., Osman, R.A.M., Idris, M.S., (2016), Review on dielectric properties of rare earth doped barium titanate, in M.F.B.M., Nazeri, L.B., Ying, and M.S.B., Idris (Eds.), AIP Conference Proceedings, 1756(1), 090005, AIP Publishing LLC.
  • [22] Chen, Y.L., Yang, S.F., (2011), PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties, Advances in Applied Ceramics, 110 (5), 257–269.
  • [23] Zakrzewska, K., (2001), Mixed oxides as gas sensors, Thin Solid Films, 391 (2), 229–238.
  • [24] Cousin, P., Ross, R.A., (1990), Preparation of mixed oxides: a review, Materials Science and Engineering: A, 130 (1), 119–125.
  • [25] Panigrahi, M., Shibata, E., Iizuka, A., Nakamura, T., (2013), Production of Fe–Ti alloy from mixed ilmenite and titanium dioxide by direct electrochemical reduction in molten calcium chloride, Electrochimica Acta, 93, 143–151.
  • [26] Kantorová, M. Veselý, D., (2013), Mixed metal oxides with the structure of perovskite for anticorrosion organic coatings, Physics Procedia, 44, 213–223.
  • [27] Ferrarelli, M.C., Tan, C.C., Sinclair, D.C., (2011), Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3, Journal of Materials Chemistry, 21 (17), 6292–6299.
  • [28] Chiou, B.-S., Wang, I.-H., (1998), Effect of MgO addition on the electrical transport properties of highly Sb-doped BaTiO3 ceramics, Journal of Materials Science: Materials in Electronics, 9 (2), 145–150.
  • [29] Hreniak, D., Strek, W., Chmielowiec, J., Pasciak, G., Pazik, R., Gierlotka, S., Lojkowski, W., (2006), Preparation and conductivity measurement of Eu doped BaTiO3 nanoceramic, Journal of Alloys and Compounds, 408, 637–640.
  • [30] Lu, D.-Y., Cui, S.-Z., Liu, Q.-L., Sun, X.-Y., (2016), Dielectric properties and defect chemistry of barium titanate ceramics co-doped R and Dy ions (R= Eu, Gd, Tb), Ceramics International, 42 (13), 14364–14373.
  • [31] Yildirim, S., Akalin, S.A., Oguzlar, S., Ongun, M.Z., Ozer, C., Erol, M., (2019), Comparison of structural and optical properties of CeO2 and CeO2: Eu 3+ nanoparticles synthesized via sol–gel and flame spray pyrolysis methods, Journal of Materials Science: Materials in Electronics, 30 (14), 13749–13756.
  • [32] Park, K.-J., Kim, C.-H., Yoon, Y.-J., Song, S.-M., Kim, Y.-T., Hur, K.-H., (2009), Doping behaviors of dysprosium, yttrium and holmium in BaTiO3 ceramics, Journal of the European Ceramic Society, 29 (9), 1735–1741.
  • [33] Lu, D.-Y., (2015), Self-adjustable site occupations between Ba-site Tb3+ and Ti-site Tb4+ ions in terbium-doped barium titanate ceramics, Solid State Ionics, 276, 98–106.
  • [34] Lee, W.-H., Groen, W.A., Schreinemacher, H., Hennings, D., (2000), Dysprosium doped dielectric materials for sintering in reducing atmospheres, Journal of Electroceramics, 5 (1), 31–36.
  • [35] Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., Hanuskova, M., (2000), Influence of foreign ions on the crystal structure of BaTiO3, Journal of the European Ceramic Society, 20 (12), 1997–2007.
  • [36] Gao, D., Xiao, D., Bi, J., Yu, P., Yu, G., Zhang, W., Zhu, J., (2003), Hydrothermal syntheses of barium strontium titanate thin films, Materials Transactions, 44 (7), 1320–1323.
  • [37] Chornik, B., Fuenzalida, V.A., Grahmann, C.R., Labbé, R., (1997), Water adsorption properties of amorphous BaTiO3 thin films, Vacuum, 48 (2), 161–164.
  • [38] Mukhopadhyay, S.M., Chen, T.C.S., (1995), Surface chemical states of barium titanate: Influence of sample processing, Journal of Materials Research, 10 (6), 1502–1507.
  • [39] Demri, B., Hage-Ali, M., Moritz, M., Kahn, J.L., Muster, D., (1997), X-ray photoemission study of the calcium/titanium dioxide interface, Applied Surface Science, 108 (2), 245–249.
  • [40] Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1992), Handbook of x-ray photoelectron spectroscopy, In J. Chastain (Ed.), Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie Minn, 55344, 82.
  • [41] Padalia, B.D., Prabhawalkar, V., Prabhawalkar, P.D., Sampathkumaran, E. V, Gupta, L.C., Vijayaraghavan, R., (1981), ESCA studies of some mixed-valence rare-earth intermetallics, Bulletin of Materials Science, 3 (2), 163–167.
  • [42] Cabello, G., Lillo, L., Caro, C., Buono-Core, G.E., Chornik, B., Soto, M.A., (2008), Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium, Journal of Non-Crystalline Solids, 354 (33), 3919–3928.
  • [43] Qi, J., Matsumoto, T., Tanaka, M., Masumoto, Y., (2000), Europium silicate thin films on Si substrates fabricated by a radio frequency sputtering method, Journal of Physics D: Applied Physics, 33 (16), 2074.
  • [44] Kim, J., Kim, D., Kim, J., Kim, Y., Hui, K.N., Lee, H., (2011), Selective substitution and tetragonality by co-doping of dysprosium and thulium on dielectric properties of barium titanate ceramics, Electronic Materials Letters, 7 (2), 155–159.
  • [45] Lo, F.-Y., Ting, Y.-C., Chou, K.-C., Hsieh, T.-C., Ye, C.-W., Hsu, Y.-Y., Chern, M.-Y., Liu, H.-L., (2015), Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition, Journal of Applied Physics, 117 (21), 213911.
  • [46] Tshabalala, M.A., Dejene, F.B., Pitale, S.S., Swart, H.C., Ntwaeaborwa, O.M., (2014), Generation of white-light from Dy3+ doped Sr2SiO4 phosphor, Physica B: Condensed Matter, 439, 126–129.
  • [47] Szczuko, D., Werner, J., Oswald, S., Behr, G., Wetzig, K., (2001), XPS investigations of surface segregation of doping elements in SnO2, Applied Surface Science, 179 (1–4), 301–306.
  • [48] Lu, D.-Y., Peng, Y.-Y., Yu, X.-Y., Sun, X.-Y., (2016), Dielectric properties and defect chemistry of La and Tb co-doped BaTiO3 ceramics, Journal of Alloys and Compounds, 681, 128–138.
  • [49] Kinoshita, K., Yamaji, A., (1976), Grain‐size effects on dielectric properties in barium titanate ceramics, Journal of Applied Physics, 47 (1), 371–373.
  • [50] Gaytan, S.M., Cadena, M.A., Karim, H., Delfin, D., Lin, Y., Espalin, D., MacDonald, E., Wicker, R.B., (2015), Fabrication of barium titanate by binder jetting additive manufacturing technology, Ceramics International, 41 (5), 6610–6619.
  • [51] Ghayour, H., Abdellahi, M., (2016), A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics, Powder Technology, 292, 84–93.
  • [52] Cao, D., Liu, B., Yu, H., Hu, W., Cai, M., (2015), First-principles study of electronic and magnetic properties in Co doped BaTiO3, The European Physical Journal B., 88 (3), 75.