VİTAMİN VE MİKROELEMENT İÇERİĞİ GENETİKSEL OLARAK ARTIRILMIŞ BİTKİLER

Bitkiler beslenmemiz için gerekli olan vitamin ve mikroelementlerin temel kaynağıdır. Fakat her gün temel olarak tükettiğimiz bitkiler çoğunlukla eksikliğinde ciddi sağlık problemlerine sebep olabilen önemli vitamin ve mikroelementler yönünden fakirdir. Biyoteknolojik araştırmalar yiyeceklerimizin besin değerinin artırılmasında sahip olduğu potansiyeli çoktan göstermiştir. Bu noktada provitamin A, C vitamini, E vitamini ve ferritin miktarı artırılmış transgenik bitkiler insan sağlığı için beslenme problemlerinin giderilmesinde ümit vericidir. Bu derleme ticari olarak büyütülen transgenik bitkileri kısaca özetlemekte olup yakın gelecekte ticari amaçlı kullanılabilecek besin değeri artırılmış yeni transgenik bitkiler üzerine odaklanmıştır.

PLANTS GENETICALLY ENHANCED with VITAMINS and MICROELEMENTS

Plants are a major source of vitamins and micronutrients that required in human diet. However main food crops are usually deficient in important nutrients such as vitamins and microelements that deficiencies can cause series health problems. Biotechnology research has already demonsrated its potantial in enhancing the nutritional quality of our food. At this point, transgenic plants with enhanced provitamin A, vitamin C, vitamin E and ferritin content are promising for solving nutrition problems for human health. This review briefly summarise commercially grown transgenic crops and concentrates on new transgenic crops with enhanced nutritive value that might commercialized in near future.

___

  • [1] Rommens, C.M. (2004). All-native DNA transformation: a new approach to plant genetic engineering. Trends in Plant Science, 9(9): 457-464.
  • [2] Popelka, J.C., Terryn, N. And Higgins, T.J.V. (2004). Gene technology for grain legumes: can it contribute to the food challange in developing countries? Plant Science, 167: 195-206.
  • [3] Skerritt, J.H. (2000). Genetically modified plants: developing countiries and the publich acceptance debate. AgBiotechNet, ABN 040 2: 1-8.
  • [4] Ölçer, H. (2001). Transgenik bitkiler:Tarımsal uygulamaları, üretim ve tüketiminin kontrolü. Ekoloji Çevre Dergisi, 40: 20-23.
  • [5] James, C. (2004).Global status of commercialized biotech/GM crops: 2004. International Service For The Acquisition Of Agri-Biotech Applications (ISAAA), 32: 3-12.
  • [6] The International Center for Genetic Engineering and Biotechnology. URL: www.icgeb.org
  • [7] Biotechnology and GMOs. Europen Commission Joint Research Centre. URL: http:// gmotraining.jrc.it.
  • [8] Dunwell, J.M. (1999). Transgenic crops: The next generation, or and example of 2020 vision. Annals of Botany, 84: 269-277.
  • [9] Sahrawat, A.K., Becker, D., Lütticke, S. and Lörz, H. (2003). Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 165: 1147-1168.
  • [10] Zimmermann, M.B. and Hurrell, R.F. (2002). Improving iron, zinc and vitamin A nutrition through plant biology. Current Opinion in Biotechnology, 13: 142-145.
  • [11] Tucher, G. (2003). Nutritional enhancement of plants. Current Opinion in Biotechnology, 14: 221-225.
  • [12] Potrykus, Ingo. (2001). Golden rice and beyond. Plant Physiology, 125: 1157-1161.
  • [13] Chen, Z., Young, T. E., Ling, J., Chang, S-C. and Gallie, D.R. (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences, 100(6): 3225-3230.
  • [14] Van Eenennaam, A. L., Lincoln, K., Durrett, T. P., Valentin, H. E., Shewmaker, C. K., Thorne, G.M., Jiang, J., Baszis, S.R., Levering, C. K., Aasen, E. D., Hao, M., Stein, J. C., Norris, S. R. And Last, R. L. (2003). Engineering vitamin E content: from arabidopsis mutant to soy oil. The Plant Cell, 15: 3007-3019.
  • [15] Lucca, P., Hurrell, R. and Potrykus, I. (2002). Fighting iron deficiency anemia with iron-rich rice. Journal of the American College of Nutrition, 21(3): 184-190.
  • [16] Unicef. URL: www. unicef.org
  • [17] Giuliano, G., Aquilani, R. and Dharmapuri, S. (2000). Metabolic engineering of plant carotenoids. Trends in Plant Science, 5(10): 406-409.
  • [18] Fraser, P.D., Romer, S., Shipton, C.A., Philippa B. Mills, P.B., Joy W. Kiano, J.W., Norihiko Misawa, N., Rachel G. Drake, R.G., Wolfgang Schuch, W. and Bramley, P.M. (2002). Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proceedings of the National Academy of Sciences of USA, 99(2): 1092-1097.
  • [19] Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P. And Potrykus, I. (2000). Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287: 303-305.
  • [20] Beyer, P., Al-Babili, S., Xudong Ye, X., Lucca, P., Schaub, P, Ralf Welsch, R. and Ingo Potrykus, I. (2002). Golden Rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. Journal of Nutrition, 132: 506S-510S.
  • [21] Römer, S., Frase, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W. and Bramley, P.M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18: 666-669.
  • [22] Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B. and Giuliano, G. (2000). Metabolic engineering of betacarotene and lycopene content in tomato fruit. The Plant Journal, 24(3): 41-419.
  • [23] Ducreux, L.J.M., Morris, W.L., Hedley, P.E., Shepherd, T., Davies, H.V., Millam, S. and Taylor, M.A. (2005). Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. Journal of Experimental Botany, 56(409): 81-89.
  • [24] Misawa, N., Masamoto., K., Hori, T., Ohtani, T., Böger, P. and Sandmann, G. (1994). Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. The Plant Journal, 6(4): 481-489.
  • [25] Shewmaker, C.K., Sheehy, J.A., Daley, M., Colbum, S. and Ke, D.Y. (1999). Seedspecific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4): 401-412.
  • [26] Burkhardtt, Peter., Beyer, P., Wünn, J., Klöti, A., Armstrong G.A., Schledz, M., von Linting, J. and Potrykus, I. (1997). Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. The Plant Journal, 11(5): 1071-1078.
  • [27] Vapuesta, V. and Botella, M.A. (2004). Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science, 9(12): 573-577.
  • [28] Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J. Botella, M.A. and Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology, 21(2): 177-181.
  • [29] Conklin, P.L., Norris, S.R., Wheeler, G.L., Williams, E.H., Smirnoff, N. And Last, R.L. (1999). Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of USA, 96: 4198-4203.
  • [30] Wolucka, B.A. and Montaqu, M.V. (2003). GDP-mannose 3, 5- epimerase forms GDP-L-gulose, a putative intermediate for de novo biosynthesis of vitamin C in plants. The Journal of Biological Chemistry, 278(48): 47483-47490.
  • [31] Hancock, R.D. and Viola, R. (2002). Biotechnological approaches for L-ascorbic acid production. Trends in Biotechnology, 20(7): 299-305.
  • [32] Hofius, D. And Sonnewald, U. (2003). Vitamin E biosynthesis: biochemisrty meets cell biology. Trends in Plant Science, 8(1): 6-8.
  • [33] Herbers, K. (2003). Vitamin production in transgenic plants. Journal of Plant Physiology, 160: 821-829.
  • [34] Grusak, M.A. and DellaPenna, D. (1999). Improving the nutrient composition of plant to enhance human nutrition and health. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 133-161.
  • [35] Tocopherols and Ubiquinones. The Lipid Library. URL: www.lipidlibrary.co.uk
  • [36] Sattler, S.C., Cheng, Z. and DellaPenna, D. (2004) From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends in Plant Science, 9(8): 365-367.
  • [37] Tasegaye, Y., Shintani, D.K. and DellaPenna, D. (2002). Overexpression of the enzymes p-hydroxyphenlypyruvate dioxygenase in Arabidopsis and its relationship to tocopherol biosynthesis. Plant Physiology and Biochemistry, 40: 913-920.
  • [38] Falk, J., Andersen, G., Kernebeck, B. and Krupinska, K. (2003). Constitutive overexpression of barley 4-hydroxyphenlypruvate dioxygenase in tobacco results in elevation of vitamin E content in seeds but not in leaves. FEBS letters, 540: 35-40.
  • [39] Savidge, B., Weiss, J.D., Wong, Y.H., Lassner, M.W., Mitsky, T.A., Shewmaker, C.K., Post-Beittenmiller, D. and Henry E. Valentin, H.E. (2002). Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis Plant Physiology, 129: 321-332.
  • [40] Collakova, E. and DellaPenna, D. (2003). Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiology, 131: 632-642.
  • [41] Ajjawi, I. And Shintani, D. (2004). Engineered plants with elevated vitamin E: a nutraceutical success story. Trends in Biothecnology, 22(3): 104-107.
  • [42] Marschner, H. (1997). Functions of mineral nutrients: Micronutrients. In Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, pp 313-324.
  • [43] Samuelsen, A.I., Martin, R.C., Mok, D.W.S. and Mok, M.C. (1998). Expression of the yeast FRE genes in transgenic tobacco. Plant Physiology, 118: 51-58.
  • [44] Robinson, N.J., Procter, C.M., Connolly, E.L. and Guerinot, M.L. (1999). A ferricchelate reductase fro iron uptake from soils. Nature, 397: 694-697.
  • [45] Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L. and Guerinot, M.L. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology, 133: 1102-1110.
  • [46] Grusak, M.A. (2002). Enhancing mineral content in plant food products. Journal of the American Collage of Nutrition, 21: 178-183.
  • [47] Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa N-K, Mori S. (1999). Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology, 121: 947 - 956.
  • [48] Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology, l19:466 -469.
  • [49] Guerinot, M.L. and Salt, D.E. (2001). Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiology, 125: 164-167.
  • [50] Toppi, L. S., Prasad, M.N.V. And Ottonello, S. (2002). Metal chelating peptides and proteins in plants. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, Edited by Prasad, M.N.V. and Strzatka, K. Kluwer Academic Publishers, pp 59-93.
  • [51] Vasconceles, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., krishnan, S., Oliveria, M., Goto, F. and Datta, S.K. (2002). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Science, 164: 371-378.
  • [52] Brinch-Pederson, H., Sorenson, L.D. and Holm, P.B. (2002). Engineering crop plants: getting a handle on phosphate. Tends in Plant Science, 7: 118-125.
  • [53] Food and Agriculture Organization of the United Nations. URL: www.fao.org
  • [54] Nestle, M. (2001). Genetically engineered Golden Rice is unlikely to overcome vitamin deficiency. Journal of the American dietetic Association, 101: 289-290.