POLİ(BÜTİL AKRİLAT-KO-METİL METAKRİLAT)/MONTMORİLLONİT SENTEZİ VE YOL ÇİZGİ BOYA BAĞLAYICISI OLARAK KULLANIMI

Bu çalışmada, su bazlı kaplama malzemelerinde bağlayıcı olarak kullanılan poli(bütil akrilat-ko-metil metakrilat) kopolimerinin emülsiyon polimerizasyonu ile sentezlenmesi amaçlanmıştır. Sentezlenen kopolimerin film özelliklerini geliştirmek amacıyla Na-montmorillonit kullanılarak nanokompozit elde edilmiştir. Diferansiyel taramalı kalorimetre (DSC) ile camsı geçiş sıcaklığı, termal gravimetrik analiz (TGA) ile ısıl kararlılık belirlenmiştir. Bu analizler kopolimerin ısıl özelliklerinin geliştiğini göstermiştir. Ayrıca gerçekleştirilen mekanik test ile mekanik dayanımın da arttığı görülmüştür. Elde edilen katkısız ve montmorillonit katkılı kopolimerlerin bağlayıcı olarak kullanıldığı su bazlı yol çizgi boyaları üretilmiştir. Üretilen yol çizgi boyalarının Karayolları Genel Müdürlüğü’nün istediği standartlarda olduğu örtme, yüzey kuruma, dip kuruma, aşınma direnci ve kromatiklik koordinatları gibi boya testleri ile belirlenmiştir. Montmorillonit, kopolimerin film özelliklerini geliştirmiştir. Ancak katkısız kopolimerli bağlayıcı ile montmorillonit bazlı nanokompozit bağlayıcının kullanıldığı boyaların özellikleri arasında önemli bir fark görülmemiştir.

SYNTHESIS OF POLY(BUTYL ACRYLATE-CO-METHYL METHACRYLATE)/NANCOMPOSITES AND ITS USE IN ROAD MARKING PAINT

In this study, poly (butyl acrylate-co-methyl methacrylate) copolymer which has been used as binders in water-based coating materials  is intended to be synthesized by emulsion polymerization. In order to improve the film properties of the resulting copolymer, polymer-nanocomposites were obtained via Na-montmorillonite. By using Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), glass transition temperature and thermal stability was determined, respectively. DSC and TGA showed the improvement in thermal properties. It has also been found out through mechanical test that the mechanical strength of the pure latex increased. Water based road marking paints were produced by using pure latex and Na-montmorillonite reinforced copolymer. Produced road marking paint was in the limits of the General Directorate of Highways standards according to the dye tests of hiding power solid dry time, no pick up time, abrasion resistance and chromaticity coordinates. Montmorillonite enhanced copolymer film properties. However, no distinction was observed between the properties of pristine copolymer containing paint and nanocomposite copolymer containing paint.

___

  • [1] Y. Liu, Je. C. Haley, K. Deng, W. Lau, M. A. Winnik, “Effect of polymer composition on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) Latex Films”, Macromolecules, 40, 6422-6431, (2007).
  • [2] K. Walker, “Additives for water-based coatings”, D. R. Karsa, Royal Chemical Society, London, 198, (1990).
  • [3] B. Muller, U. Poth, “Coatings formulation”, Vincentz Network Gmbh & Co. KG, Hannover, (2006).
  • [4] A. M. Berendsen, “Marine painting manual”, Graham &Trotman, London, 109, (1989).
  • [5] C. Liu, Y. Fu, J. Zheng, “Synthesis and properties of acrylic emulsion with core-shell structure in antifouling paints”, Adv. Mat. Res., 79-82, 537-540, (2009).
  • [6] M. Soleimani, S. Khan, D. Mendenhall, W. Lau, M. A. Winnik, “Effect of molecular weight distribution on polymer diffusion during film formation of two-component high-/low-molecular weight latex particles”, Polymer, 53, 2652–2663, (2012).
  • [7] M. F. Garcia, R. C. Rodriguez, E. L. Madruga, “Glass transition temperatures of butyl acrylate–methyl methacrylate copolymers”, J. Polym. Sci.: Part B: Polym. Phy., 37, 2512–2520, (1999).
  • [8] Z. Buhin, S. L. Blagojevic, M. Leskovac, “In situ emulsion polymerization and characterization of poly(butyl acrylate-co-methyl methacrylate)/silica nanosystems”, Polym. Eng. Sci., 53(11), 2292–2298, (2013).
  • [9] J. C. Haley, Y. Liu, M. A. Winnik, W. Lau, “The onset of polymer diffusion in a drying acrylate latex: how water initially retards coalescence but ultimately enhances diffusion”, J. Coat. Technol. Res., 5 (2) 157–168, (2008).
  • [10] W. F. Schroeder, Y. Liu, J. P. Tomba, M. Soleimani, W. Lau, M. A. Winnik, “Effect of a coalescing aid on the earliest stages of polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films”, Polymer, 52, 3984-3993, (2011).
  • [11] M. Soleimani, J. C. Haley, W. Lau, M. A. Winnik, “Effect of hydroplasticization on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) and poly(2-hylhexyl acrylate-co-tert-butyl methacrylate) latex films”, Macromolecules, 43, 975–985, (2010).
  • [12] Y. Liu, J. C. Haley, K. Deng, W. Lau, M. A. Winnik, “Effect of polymer composition on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films”, Macromolecules, 40, 6422-6431 (2007).
  • [13] Y. Liu, W. F. Schroeder, J. C. Haley, W. Lau, M. A. Winnik, “Effect of branching on polymer diffusion in branched poly(butyl methacrylate) latex films”, Macromolecules, 41, 9104-9111 (2008).
  • [14] W. F. Schroeder, Y. Liu, J. P. Tomba, M. Soleimani, W. Lau, M. A. Winnik, “Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) Latex Films”, J. Phys. Chem. B, 114, 3085–3094 (2010).
  • [15] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, “Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam “, J. Polym. Sci. Part A: Polym. Chem., 31, 983-987, (1993).
  • [16] K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito “Synthesis and properties of polyimide–clay hybrid”, J. Polym. Sci. Part A: Polym. Chem., 31(10), 2493–2498, (1993).
  • [17] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, “One-pot synthesis of nylon 6–clay hybrid” J. Polym. Sci. Part A: Polym. Chem., 31(7), 1755–1758, (1993).
  • [18] Y. Kojima, M. Kawasumi, A. Usuki, A. Okada, Y. Fukushima, T. Kurachi, O. Kamigaito, “Mechanical properties of nylon 6-clay hybrid”, J. Mater. Res., 8 (5), 1185, (1993).
  • [19] Y. Kojima, K. Fukumori, A. Usuki, A. Okada, T. Kurauchi, “Gas permeabilities in rubber-clay hybrid”, J. Mater. Sci. Lett., 12(12), 889-890, (1993).
  • [20] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi O. Kamigaito, “Synthesis of nylon 6-clay hybrid”, J. Mater. Res., 8(5), 1179 – 1184, (1993).
  • [21] Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, I. J. Chung, “Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization”, Macromolecules, 34, 8978-8985, (2001).
  • [22] Y. S. Choi, K. H. Wang, M. Xu, I. J. Chung, “Synthesis of exfoliated polyacrylonitrile/na−mmt nanocomposites via emulsion polymerization” Chem. Mater., 14, 2936-2939, (2002).
  • [23] Y. K. Kim, Y. S. Choi, K. H. Wang, I. J. Chung, “Synthesis of exfoliated ps/na−mmt nanocomposites via emulsion polymerization” Chem. Mater., 14, 4990-4995, (2002).
  • [24] D. C. Lee, L. W. Jang, “Preparation and characterization of PMMA–Clay hybrid composite by emulsion polymerization”, J. Appl. Polym. Sci., 61, 1117-1122, (1996).
  • [25] M. H. Noh, D. C. Lee, “Comparison of characteristics of SAN–MMT nanocomposites prepared by emulsion and solution polymerization”, J. Appl. Polym. Sci., 74, 2811-2819, (1999).
  • [26] M. H. Noh, L. W. Jang, D. C. Lee, “Intercalation of styrene–acrylonitrile copolymer in layered silicate by emulsion polymerization”, J. Appl. Polym. Sci., 74, 179-188, (1999).
  • [27] M. H. Noh, D. C. Lee, “Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization”, Polym. Bull., 42(5), 619-626, (1999).
  • [28] L. W. Jang, C. M. Kang, D. C. Lee, “new hybrid nanocomposite prepared by emulsion copolymerization of ABS in the presence of clayé, J. Polym. Sci., Part B: Polym. Phys., 39, 719-727, (2001).
  • [29] G. Diaconu, M. Paulis, J. R. Leiza, “High solids content waterborne acrylic/montmorillonite nanocomposites by miniemulsion polymerization”, Macromol. React. Eng., 2, 80-89, (2008).
  • [30] G. Diaconu, M. Paulis, J. R. Leiza, “Towards the synthesis of high solids content waterborne poly/methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites”, Polymer, 49, 2444-2454, (2008).
  • [31] G. Diaconu, M. Micusik, A. Bonnefond, M. Paulis, J. R. Leiza, “Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/Mt nanocomposite latexes”, Macromolecules, 42, 3316-3325, (2009).
  • [32] N. Köker, H. Şen, “Karayolları fizik k laboratuvarı şefliği laboratuvar el kitabı”, Teknik Araştırma Dairesi Başkanlığı Malzeme Laboratuvarı Şubesi Müdürlüğü, ANKARA, (2010).
  • [33] P. Meneghetti, S. Qutubuddin, “Synthesis of poly(methyl methacrylate) nanocomposites via emulsion polymerization using a zwitterionic surfactant” Langmuir, 20, 3424-3430, (2004).
  • [34] J. M. Asua, “Miniemulsion polymerization”, Prog. Polym. Sci., 27, 1283-1346, (2002).
  • [35] L. Houillot, J. Nicola, M. Save, B. Charleux, “Miniemulsion Polymerization of Styrene Using a pH-Responsive Cationic Diblock Macromonomer and Its Nonreactive Diblock Copolymer Counterpart as Stabilizers”, Langmuir, 21, 6726-6733, (2005).
  • [36] D. Mouran, J. Reimers, F. J. Schork, “Miniemulsion polymerization of methyl methacrylate with dodecyl mercaptan as cosurfactant”, J. Polym. Sci., Part A-1: Polym. Chem., 34, 1073-1081, (1996).
  • [37] B. Z. Jang, “Advanced Polymer Composites: Principles and Applications”, ASM International, Materials Park, OH, (1994).
  • [38] A. Samakande, R. D. Sanderson, P. C. Hartmann, “Rheological properties of RAFT-mediated poly(styrene-co-butyl acrylate)–clay nanocomposites [P(S-co-BA)-PCNs]: Emphasis on the effect of structural parameters on thermo-mechanical and melt flow behaviors”, Polymer, 50, 42–49, (2009).
  • [39] J. P. Zhang, A. Q. Wang, “Synergistic effects of Na+-montmorillonite and multi-walled carbon nanotubes on mechanical properties of chitosan film”, Express Polym. Lett., 3, 302-308, (2009).