BETONARME ÇELİĞİNİN DEFORMASYONUNUN ÖNLENMESİ İÇİN METOTLAR

Betonarme, inşaat ve mimarlık dünyasına getirdiği yeniliklerle bu alanda vazgeçilmez bir yapı elemanı olmuştur. Fakat betonarme yapılar betonarmedeki demir donatıların paslanmasından dolayı deformasyona maruz kalıyorlar ve mali acıdan bu durumun getirdiği yük düşünüldüğünde bu sorunun değerlendirilmesi ve kontrol altına alınması kaçınılmazdır. Bu makale bu sorunun giderilmesinde kullanılan en yaygın metotların analizi ve en başarılı olan metodun tespiti üzerine bir çalışmadır. En yaygın metotlardan deformasyon önleyici araç olarak Kalsiyum Nitrat, ikinci olarak demir donatiya alternatif olarak fiber takviyeli polimer, son olarak demir kaplamasında kullanılan epoksi tekniğidir. Sonuçlar inşaatta sürdürülebilirlik açısından önemli bilgiler taşımaktadır.  

METHODS FOR PREVENTING OF DEFORMATION OF THE REINFORCED CONCRETE STEEL

Reinforced concrete has become an indispensable structural element of modern construction and architecture as a result of the innovations reinforced concrete brought to construction field. However, reinforced concrete structures encounters corruption due to reinforcement steel corrosion in concrete and based on the economical worth of the problem the management of the corrosion methods should be taken into consideration. This paper is aimed to analyze the most common ways of what concluding the best method. The most efficient, applications of the three methods are discovered which are calcium nitrite as the most efficient corrosion inhibitor, fibre-reinforced polymer as an example of an alternative corrosion resistant reinforcement, and finally epoxy-coated reinforcing as rebar coating. This research provides significant information to obtain sustainability in constructions.

___

  • [1] Zhou Z., Ou J. P., and Wang B. (2003), “Smart FRP-OFGB bars and their application in reinforced concrete beams”, Proceedings of 1st International Conference on Structural Health Monitoring and Intelligent Infrastructure, 13-15, Nov, Tokyo, Japan: 861-866.
  • [2] Khan, M. M., Dakhil, F. H., Bader, M. A., and Rasheeduzzafar, A. (1992). "Performance of Corrosion Resisting Steel in Chloride Bearing Concrete." ACI Materials Journal, 89(Sept-Oct.), 439-448.
  • [3] Kahyaoglu, H. et al (2002). Corrosion of Reinforcing Steel in Concrete Immersed in Chloride Solution and the E ects of Detergent Additions on Di usion and Concrete Porosity. Turk J Chem 26, 759 - 769.
  • [4] Broomfield, J. P. and Buenfeld, N. R. (1997). “Effect of Electrochemical Chloride Extraction on Concrete Properties,” Transportation Research Record, No. 1597, pp. 77-81.
  • [5] Khatun, S., Rashid, M., Uddin, S. M., and Nayeem, M. A., (2010). “Effect of Strength and Covering on Concrete Corrosion,” European Journal of Scientific Research, Vol. 40, 2010, pp. 492-499
  • [6] Abiola, O. K., James A. O., Oforka, N. C., (2007). Inhibition of Acid Corrosion of Mild Steel by Pyridoxal and Pyridoxol Hydrochlorides. Int. J. Electrochem. Sci., 2, pp. 278 - 284
  • [7] Berke, Neal S., Pfeifer, Donald W., and Weil, Thomas G. (1988). “Protection Against Chloride-Induced Corrosion,” Concrete International, Vol. 10, No. 12, Dec., pp. 45-55.
  • [8] Berke, Neal S. and Rosenberg, Arnold. (1989). “Technical Review of Calcium Nitrite Corrosion Inhibitor in Concrete,” Transportation Research Record, No. 1211, pp. 18-27.
  • [9] Burke, D. F. (1994). "Performance of Epoxy-Coated Rebar, Galvanized Rebar, and Plain Rebar with Calcium Nitrite in a Marine Environment." Concrete Reinforcing Steel Institute, Research Series -2, CRSI.
  • [10] El-Jazairi, B., and Berke, N. S. (1990). "The Use of Calcium Nitrite as a Corrosion Inhibiting Admixture to Steel Reinforcement in Concrete." Corrosion of Reinforcement in Concrete, C. L. Page, K. W. J. Treadaway, and P. B. Bamforth, eds., Elsevier Applied Science, London 571-585.
  • [11] Pfeifer, D. W., Landgren, J. R., and Zoob, A. (1987). "Protective Systems for New Prestressed and Substructure Concrete." FHWA-RD-86-193, FHWA, McLean, VA.
  • [12] Trepanier, S. M., Hope, B. B., and Hansson, C. M. (2001). "Corrosion Inhibitors in Concrete: Part III. Effect on Time to Chloride-Induced Corrosion Initiation and Subsequent Corrosion Rates of Steel in Mortar." Cement and Concrete Research, 31(5), 713 718.
  • [13] Ann, K. Y., Jung, H. S., Kim, H. S., Kim, S. S., and Moon, H. Y. (2006). "Effect of Calcium Nitrite-Based Corrosion Inhibitor in Preventing Corrosion of Embedded Steel in Concrete." Cement and Concrete Research, 36(3), 530-535.
  • [14] Montes P, Bremner TW, Lister DH. (2004). Influence of calcium nitrate inhibitor and crack width on corrosion of steel in high performance concrete subjected to a simulated marine environment. Cem Concr Compos 2004;26(3):243–54.
  • [15] Scott A, Civjan A, Lafave JM, Joanna T, Lovett D, Jose L, et al. (2005). Effectiveness of corrosion inhibiting admixture combinations in structural concrete. Cem Concr Compos 2005;27:688–703.
  • [16] Qian S, Cusson D. (2004). Electrochemical evaluation of the performance of corrosioninhibiting systems in concrete bridges. Cem Concr Compos 2004;26:217–33.
  • [17] Al-Mehthel, M., Al-Dulaijan, S., Al-Idi, S. H., Shameem, M., Ali, M.R., Maslehuddin, M. (2009). Performance of generic and proprietary corrosion inhibitors in chloride-contaminated silica fume cement concrete. Construction and Building Materials, 23 (2009) 1768–1774.
  • [18] Phong, Le (1997). “Plastic Composites in Civil Engineering Structures,” California Engineer, Vol. 76, No. 2, Dec., pp. 20-24.
  • [19] Liao, Kin, Altkorn, Robert I., Milkovich, Scott M., Fildes, John M., Gomez, Jose, Schultheisz, Carl R., Hunston, Donald L. and Brinson, Catherine L. (1997). “Long-Term Durability of Glass-Fiber Reinforced Composites in Infrastructure Applications,” Journal of Advanced Materials, Vol. 28, No. 3, Apr., pp. 54-63.
  • [20] Bakis, C. D., L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla and T. C. Triantafillou (2002). "Fiber-Reinforced Polymer Composites for Construction - State-of-the-Art Review." Journal of Composites for Construction 6(2): 73-87.
  • [21] Manning, D. G. (1996). Corrosion Performance of Epoxy-Coated Reinforcing Steel: North American Experience. Construction and Building Materials.
  • [22] Sagues, A. A., Powers, R. G., and Kessler, R. (1994). Corrosion Processes and Field Performance of Epoxy-Coated Reinforcing Steel in Marine Structures. Corrosion
  • [23] McCrum, L., Lower, B. R., and Arnold, C. J. (1995). A Comparison of the Corrosion Performance of Uncoated, Galvanized, and Epoxy Coated Reinforcing Steel in Concrete Bridge Decks. Research Report No. R-1321 (FHWA/MI-95 (02)), Michigan Department of Transportation, Lansing, MI.
  • [24] Clear, K. C. (1992). Effectiveness of Epoxy-Coated Reinforcing Steel- Final Report, Canadian Strategic Highway Research Program, Ottawa, ON, 95 pp.
  • [25] Edgell, T. W., Riemenschneider, J.A. (1992). Specification and Research of Fusion Bonded Epoxy Coating Technology, Paper No. 203, CORROSION/92, Apr., Nashville, TN.
  • [26] McDonald, D. B., Pfeifer, D. W., and Sherman, M. R. (1998). Corrosion Evaluation of Epoxy-Coated, Metallic Clad and Solid Metallic Reinforcing Bars in Concrete. Publication No. FHWA-RD-98-153, US Department of Transportation Federal Highway Administration.
  • [27] Poon, S.W. and Tasker, I. Extending Building Life with Fusion Bonded Epoxy. Asia Engineer, The Journal of the Hong Kong Institution of Engineers, Vol. 26, No. 8, 1998, pp. 17-22.
  • [28] Pyc, W., Weyers, R.E., Sprinkel, M. M., Weyerw, R.M., Mokarem, D.W., and Dillard, J.G. (2000). Performance of Epoxy-Coated Reinforcing Steel. Concrete International, Vol. 22, No. 2, Feb., pp. 57-62.
  • [29] Saunders, M., Lewis, P. and Thornhill, A. (2007), Research Methods for Business Students, 3rd edition. Harlow: Pearson Education Limited.
  • [30] Virmani, Yash Paul and Clemena, Gerardo G. (1998). “Corrosion Protection- Concrete Bridges,” Report No. FHWA-RD-98-088, Federal Highway Administration, Washington, D.C.