ANTIMICROBIAL ACTIVITY of (E)-3-(4-SULFAMOYLPHENYLCARBAMOYL) ACRYLIC ACID DERIVATIVES

ANTIMICROBIAL ACTIVITY of (E)-3-(4-SULFAMOYLPHENYLCARBAMOYL) ACRYLIC ACID DERIVATIVES

In this study, proton transfer salts {(Hap)+(samal)- (4) and (HBI)+(samal)- (5)} were synthesized from the reaction of (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid (Hsamal, 1) with 1H-benzimidazole (BI, 3) or 2-aminopyridine (ap, 2), metal complexes of 1 {Fe(II) {[Fe(samal)(H2O)2][Fe(OH)3(H2O)] (6) and [(H2O)(OH)2Fe(samal)Fe(H2O)2] (7)}, Co(II) {[(H2O)(OH)2Co(samal)Co(H2O)2] (8)}, Ni(II) {[Ni(samal)2(H2O)2] (9)} and Cu(II) {[Cu(samal)2(H2O)2] (10)}}, of 4 {Ni(II) {[(H2O)(OH)Ni(samal)Ni(OH)2(ap)(H2O)2] (11)}, Cu(II) {[Cu(samal)(OH)(ap)2] (12)} and of 5 {Co(II) {[(HO)2Co(samal)Co(BI)2] (13)}, Ni(II) {[(H2O)2(HO)3Ni(samal)Ni(BI)2] (14)} and Cu(II) {[(H2O)2(HO)3Cu(samal)Cu(BI)2(OH)] (15)}} by the methods found in the literature. Antimicrobial activities of 1-15 and metal salts {iron(II) sulfate heptahydrate (16), cobalt(II) acetate tetrahydrate (17), nickel(II) acetate tetrahydrate (18) and copper(II) acetate dihydrate (19)} against Enterococcus faecalis (ATCC 29212) (Gram positive), Pseudomonas aeruginosa (ATCC 27853), Bacillus subtilis (wild type), Staphylococcus aureus (NRRL B-767), Listeria monocytogenes (ATCC 7644), Escherichia coli (ATCC 25922) (Gram negative) and Candida albicans (ATCC 14053) (yeast) microorganisms has been tested. The MIC (Minimum Inhibitory Concentration) values of 1-19 were compared with those of reference antimicrobial compounds Vancomycin, Cefepime, Levofloxacin and Fluconazole. Compounds with the best activity are 12 (15.60 µg/mL) for C. albicans, 1 and 2 (31.25 µg/mL) for B. subtilis, 13 (31.25 µg/mL) for E. faecalis, 13 (15.60 µg/mL) for S. aureus, 4 and 12 (15.60 µg/mL) for E. Coli, 3 and 8-12 (31.25 µg/mL) for L. monocytogens, and 8 (31.25 µg/mL) for P. aeruginoa.

___

  • [1] Gupta, S. K. S., (2016). Proton transfer reactions in apolar aprotic solvents. Journal of Physical Organic Chemistry, 29, 251–264.
  • [2] Armentano, D., De Munno, G., Mastropietro, T. F., Julve, M., and Lloret, F. (2005). Intermolecular proton transfer in solid phase, a rare example of crystal-to-crystal transformation from hydroxo-to oxo-bridged iron (III) molecule-based magnet. Journal of the American Chemical Society, 127, 10778–10779.
  • [3] Root, M. J., and MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science, 265, 1852–1856.
  • [4] Gerlits, O., Wymore, T., Das, A., Shen, C. H., Parks, J. M., Smith, J. C., Weiss, K. L., Keen, D. A., Blakeley, M. P., Louis, J. M., Langan, P., Weber, I. T., and Kovalevsky, A. (2016). Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site. Angewandte Chemie International Edition, 55, 4924–4927.
  • [5] Moghimi, A. Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M., and Shockravi, A. (2003). First anionic 1,10-phenanthroline-2,9-dicarboxylate containing metal complex obtained from a novel 1,1 proton−transfer compound, Synthesis, characterization, crystal structure, and solution studies. Inorganic Chemistry, 42, 1616–1624.
  • [6] Nichols, D. A., Hargis, J. C., Sanishvili, R., Jaishankar, P., Defrees, K., Smith, E. W., Wang, K. K., Prati, F., Renslo, A. R., Woodcock, H. L., and Chen, Y. (2015). Ligand-induced proton transfer and low-barrier hydrogen bond revealed by x-ray crystallography. Journal of the American Chemical Society, 137, 8086–8095.
  • [7] Shimizu, G. K, Taylor, J. M., and Kim, S. (2013). Proton conduction with metal-organic frameworks. Science, 341, 354–355.
  • [8] Yoon, M., Suh, K., Natarajan, S., and Kim, K. (2013). Proton conduction in metal–organic frameworks and related modularly built porous solids. Angewandte Chemie International Edition, 52, 2688–2700.
  • [9] Bolton, O., and Matzger, A. J. (2011). Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition, 50, 896–8963.
  • [10] Horiuchi, S., and Tokura, Y. (2008). Organic ferroelectrics. Nature Materials, 7, 357–366.
  • [11] Horiuchi, S., Kumai, R., and Tokura, Y. (2007). A supramolecular ferroelectric realized by collective proton transfer. Angewandte Chemie International Edition, 46, 3497–3501.
  • [12] Lototskyy, M. V., Tolj, I., Davids, M. W., Klochko, Y. V., Parsons, A., Swanepoel, D., Ehlers, R., Louw, G., Westhuizen, B., Smith, F., Pollet, B. G., Sita, C., and Linkov, V. (2016). Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module. International Journal of Hydrogen Energy, 41, 13831–13842.
  • [13] Adamson A., Guillemin J.C., and Burk P. (2015). Proton transfer reactions of hydrazine-boranes. Journal of Physical Organic Chemistry, 28, 244–249.
  • [14] Spry, D. B., and Fayer, M. D. (2009). Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. The Journal of Physical Chemistry B, 113, 10210–10221.
  • [15] Cochlin, D. (2014). Graphene’s promise for proton transfer in fuel cell membranes. Fuel Cells Bulletin, 2014, 12-12.
  • [16] Asselberghs, I., Zhao, Y., Clays, K., Persoons, A., Comito, A., and Rubin, Y. (2002). Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer. Chemical Physics Letters, 364, 279–283.
  • [17] Jayanalina, T., Rajarajan, G., Boopathi, K., and Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal, 2-amino-5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9–14.
  • [18] Bica, K., Shamshina, J., Hough, W. L., MacFarlane, D. R., and Rogers, R. D. (2011). Liquid forms of pharmaceutical co-crystals, exploring the boundaries of salt formation. Chemical Communications, 47, 2267–2269.
  • [19] Steed, J. W. (2013). The role of co-crystals in pharmaceutical design. Trends in Pharmacological Sciences, 34, 185–193.
  • [20] Chen, K. (2000). Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature, 405, 814–817.
  • [21] Chen, K. Y., Lai, C. H., Hsu, C. C., Ho, M. L., Lee, G. H., and Chou, P. T. (2007). Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 129, 4534–4535.
  • [22] Luecke, H., Richter, H. T., and Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934–1937.
  • [23] Heberle, J, Riesle, J., Thiedemann, G., Oesterhelt, D., and Dencher, N. A. (1994). Proton migration along the membrane surface and retarded surface to bulk transfer. Nature, 370, 379–382.
  • [24] Dellago, C., and Hummer, G. (2006). Kinetics and mechanism of proton transport across membrane nanopores. Physical Review Letters, 97,245901.
  • [25] Aghabozorg, H., Sadrkhanlou, E., Shokrollahi, A., Ghaedi, M., and Shamsipur, M. (2009). Synthesis, characterization, crystal structures, and solution studies of Ni(II), Cu(II) and Zn(II) complexes obtained from pyridine-2,6-dicarboxylic acid and 2,9-dimethyl-1,10-phenanthroline, Journal of the Iranian Chemical Society. 6(1), 55-70.
  • [26] Bapna, S., Hiran, B. L., and Jain, S. (2015). Antimicrobial evaluation of maleimide monomers, homopolymers and copolymers containing azo, sulfonamide and thiazole groups. Journal of Advances In Chemistry, 11(1), 3404-3415.
  • [27] Erol, I. (2022). Synthesis and characterization of novel sulfonamide functionalized maleimide polymers, Conventional kinetic analysis, antimicrobial activity and dielectric properties. Journal of Molecular Structure, 1255,132362.
  • [28] Jan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O. R., Ullah, F., Ayaz, M., and Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863.
  • [29] Oktay, K., Kose, L. P., Sendil, K., Gultekin M. S., Gulcin, I., and Supuran, C. T. (2016). The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6). 939-945.
  • [30] Yenikaya, C., Ilkimen, H., Demirel, M. M., Ceyhan, B., Bulbul, M., and Tunca, E. (2016). Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies, Journal of the Brazilian Chemical Society, 27(10). 1706-1714.
  • [31] İlkimen, H., and Yenikaya, C. (2022). Synthesis and characterization of proton salts of aminopyridine derivatives and (E)-3-(4-sulfamoylphenylcarbamoyl)acrylic acid. Sinop University Journal of Science, 7(1), 57-70.
  • [32] Parekh, J., and Chanda, S. (2007). Antibacterial and phytochemical studies on twelve species of Indian medicinal plants, African Journal of Biomedical Research, 10, 175-181.
  • [33] Palaniappan, K., and Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology, 140, 164-168.
  • [34] Kumar, A. S., Venkateshwaran, K., Vanitha, J., Saravanan, V. S., Ganesh, M., Vasudevan, M., and Sivakumar, T. (2008). Synergistic activity of methanolic extract of Thespesia populnea (Malvaceae) flowers with oxytetracycline. Bangladesh Journal of Pharmacology, 4, 13-16.
  • [35] Uymaz, B. (2010). Probiotics and Their Use. Pamukkale University Journal of Engineering Sciences, 16(1), 95-104.
  • [36] Topal, M., Şenel, G. U., Topal, E. I. A., Öbek, E. (2015). Antibiotics and usage areas. Journal of Erciyes University Institute of Science and Technology, 3(3), 121-127.
  • [37] Khan, R., Dogan, Ö., and Güven, K. (2020). N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications, 13(2), 51-56.
  • [38] Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A., and Güven K. (2004). Synthesis and study of antibacterial and antifungal activitiesof novel 2-[[(benzoxazole/benzimidazole2yl)sulfanyl] acetylamino]thiazoles. Archives of Pharmacal Research, 27(11), 1081-1085.
  • [39] Kaplancıklı, Z. A., Turan-Zitouni, G., Özdemir, A., Revial, G., and Güven K. (2007). Synthesis and antimicrobial activity of some thiazolyl-pyrazoline derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 182(4), 749-764.
  • [40] İlkimen, H., Yenikaya, C., Gülbandılar, A., and Sarı M. (2016). Synthesis and characterization of a novel proton salt of 2-amino-6-nitrobenzothiazole with 2,6-pyridinedicarboxylic acid and its metal complexes and their antimicrobial and antifungal activity studies. Journal of Molecular Structure, 1120, 25-33.
  • [41] İlkimen, H., Türken, N., and Gülbandılar, A. (2021). Synthesis, characterization, antimicrobial and antifungal activity of studies of two novel aminopyridine-sulfamoylbenzoic acid salts and their Cu(II) complexes. Journal of the Iranian Chemical Society, 18, 1941–1946.
  • [42] İlkimen, H., Salün, S. G., Gülbandılar, A., and Sarı, M. (2022). The new salt of 2-amino-3-methylpyridine with dipicolinic acid and its metal complexes: Synthesis, characterization and antimicrobial activity studies. Journal of Molecular Structure, 1270, 133961.
  • [43] Büyükkıdan, N., İlkimen, H., Bozyel, S., Sarı, M., and Gülbandılar, A. (2023). The syntheses, structural and biological studies of Co(II) complexes of 1,2-bis(pyridin-4-yl)ethane with 2-aminobenzene-1,4-disulfonic acid and 2,6-pyridinedicarboxylic acid. Journal of Molecular Structure, 1275, 134586.
Journal of Scientific Reports-A-Cover
  • Başlangıç: 2020
  • Yayıncı: Kütahya Dumlupınar Üniversitesi