CONFINEMENT EFFECTS on the TRANSPORT PROPERTIES of ROOM TEMPERATURE IONIC LIQUID BASED ELECTROLYTES in SUPERCAPACITORS

The study of transport properties in supercapacitors is important for optimizing their power density. Properties that control charging kinetics in supercapacitors include ion self-diffusion coefficients and ionic conductivity which are significantly different at electrode/electrolyte interfaces compared to their bulk counterparts. Here, we use molecular dynamics simulations to elucidate the effect of electrolyte composition and confinement on ion self-diffusion coefficients and ionic conductivity in mixtures of room temperature ionic liquids with organic solvents. Our results reveal that ion diffusion significantly slows down at the electrode/electrolyte interface compared to the bulk. In particular, diffusion coefficients in the dilute regime are found to be several orders of magnitude smaller than their bulk counterparts. This effect is more pronounced when a potential difference is applied between the electrodes. We show that the ionic conductivity of the electrolytes also significantly diminishes due to confinement effects manifested by the decrease in the coordination numbers of ions. Our findings depict that electrolyte composition also plays an important role in ion dynamics: Introduction of an organic solvent to a concentrated ionic solution significantly increases both bulk and interfacial diffusion coefficients while it leads to a maximum in ionic conductivity at intermediate dilution levels. These results reveal that optimizing the solvent content of an ionic liquid-based electrolyte can potentially boost the power density of supercapacitors.

___

  • [1] Béguin, F., Presser, V., Balducci, A., Frackowiak, E., (2014), Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26, 2219-2251.
  • [2] Simon, P., Gogotsi, Y., (2013), Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research, 46, 1094-1103.
  • [3] Stoller, M. D., Park, S., Zhu, Y., An, J., Ruoff, R. S., (2008), Graphene-Based Ultracapacitors. Nano Letters, 8(10), 3498-3502.
  • [4] Wong, S. I., Sunarso, J., Wong, B. T., Lin, H., Yu, A., Jia, B., (2018), Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. Journal of Power Sources, 396, 182‑206.
  • [5] Aslyamov, T., Sinkov, K., Akhatov, I., (2022), Relation between Charging Times and Storage Properties of Nanoporous Supercapacitors. Nanomaterials, 12, 587.
  • [6] Liu, T., Zhang, F., Song, Y., Li, Y., (2017), Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 5, 17705-17733.
  • [7] Péan, C., Merlet, C., Rotenberg, B., Madden, P. A., Taberna, P.-L., Daffos, B., Salanne, M., Simon, P., (2014), On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 8(2), 1576-1583.
  • [8] Pean, C., Rotenberg, B., Simon, P., Salanne, M., (2016), Understanding the different (dis)charging steps of supercapacitors: influence of potential and solvation. Electrochimica Acta, 206, 504-512.
  • [9] Uralcan, B., Aksay, I. A., Debenedetti, P. G., Limmer, D. T., (2016), Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. The Journal of Physical Chemistry Letters, 7(13), 2333-2338.
  • [10] Bozym, D. J., Uralcan, B., Limmer, D. T., Pope, M. A., Szamreta, N. J., Debenedetti, P. G., Aksay, I. A., (2015), Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents. The Journal of Physical Chemistry Letters, 6(13), 2644-2648.
  • [11] Uralcan, B., Uralcan, I. B., (2022)., Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces, 14(14), 16800-16808.
  • [12] Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R., (2019), Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1(10), 3807-3835.
  • [13] Cheng, Z., Yida D., Wenbin, H., Daoming, S., Jinli, Q., Jiujun, Z., (2016), Electrolytes for Electrochemical Supercapacitors. Routledge & CRC Press.
  • [14] Yu, L., Chen, G. Z., (2019), Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery. Frontiers in Chemistry, 7.
  • [15] Lian, Z., Chao, H., Wang, Z.-G., (2021), Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS Nano, 15(7), 11724-11733.
  • [16] Lin, R., Huang, P., Ségalini, J., Largeot, C., Taberna, P. L., Chmiola, J., Gogotsi, Y., Simon, P., (2009), Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochimica Acta, 54(27), 7025-7032.
  • [17] Feng, G., Qiao, R., Huang, J., Sumpter, B. G., Meunier, V., (2010), Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance. ACS Nano, 4(4), 2382-2390.
  • [18] Oyarzun, D. I., Zhan, C., Hawks, S. A., Cerón, M. R., Kuo, H. A., Loeb, C. K., Aydın, F., Pham, T. A., Stadermann, M., Campbell, P. G., (2021), Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS Applied Materials & Interfaces, 13(20), 23567-23574.
  • [19] Lahrar, E. H., Deroche, I., Matei Ghimbeu, C., Simon, P., Merlet, C., (2021), Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage. ACS Applied Nano Materials, 4(4), 4007-4015.
  • [20] Walton, J. P. R. B., Quirke, N., (1989), Capillary Condensation: A Molecular Simulation Study. Molecular Simulation, 2(4‑6), 361-391.
  • [21] Mu, R., Malhotra, M. V., (1991), Effects of surface and physical confinement on the phase transitions of cyclohexane in porous silica. Physical Review. B, Condensed Matter, 44(9), 4296-4303.
  • [22] Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (1999), Phase separation in confined systems. Reports on Progress in Physics, 62(12), 1573-1659.
  • [23] Spera, M. B. M., Franco, L. F. M., (2020), Surface and confinement effects on the self-diffusion coefficients for methane-ethane mixtures within calcite nanopores. Fluid Phase Equilibria, 522, 112740.
  • [24] Wang, G. J., & Hadjiconstantinou, N. G. (2018). Layered Fluid Structure and Anomalous Diffusion under Nanoconfinement. Langmuir, 34(23), 6976-6982.
  • [25] Leoni, F., Calero, C., Franzese, G., (2021), Nanoconfined Fluids: Uniqueness of Water Compared to Other Liquids. ACS Nano, 15(12), 19864-19876.
  • [26] Griffin, J. M., Forse, A. C., Wang, H., Trease, N. M., Taberna, P.-L., Simon, P., Grey, C. P., (2015), Ion counting in supercapacitor electrodes using NMR spectroscopy. Faraday Discussions, 176(0), 49-68.
  • [27] Boukhalfa, S., He, L., Melnichenko, Y. B., Yushin, G., (2013), Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angewandte Chemie (International Ed. in English), 52(17), 4618-4622.
  • [28] Levi, M. D., Salitra, G., Levy, N., Aurbach, D., Maier, J., (2009), Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nature Materials, 8(11), 872-875.
  • [29] Richey, F. W., Dyatkin, B., Gogotsi, Y., Elabd, Y. A., (2013), Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. Journal of the American Chemical Society, 135(34), 12818-12826.
  • [30] Roy, D., Patel, N., Conte, S., Maroncelli, M., (2010), Dynamics in an Idealized Ionic Liquid Model. The Journal of Physical Chemistry B, 114(25), 8410-8424.
  • [31] Edwards, D. M. F., Madden, P. A., McDonald, I. R., (1984), A computer simulation study of the dielectric properties of a model of methyl cyanide. Molecular Physics, 51(5), 1141-1161.
  • [32] Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C., (1977), Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. Journal of Computational Physics, 23, 327-341.
  • [33] Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P .J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., Plimpton, S.J., (2022), LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171.
  • [34] Hockney, R. W., Eastwood, J. W., (2021), Computer Simulation Using Particles. CRC Press.
  • [35] Cole, M. W., Klein, J. R., (1983), The interaction between noble gases and the basal plane surface of graphite. Surface Science, 124(2‑3), 547-554.
  • [36] Merlet, C., Rotenberg, B., Madden, P. A., Salanne, M., (2013), Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 15(38), 15781-15792.
  • [37] Merlet, C., Péan, C., Rotenberg, B., Madden, P. A., Daffos, B., Taberna, P.-L., Simon, P., Salanne, M., (2013), Highly confined ions store charge more efficiently in supercapacitors. Nature Communications, 4, 2701.
  • [38] Merlet, C., Péan, C., Rotenberg, B., Madden, P. A., Simon, P., Salanne, M., (2013), Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces? The Journal of Physical Chemistry Letters, 4(2), 264-268.
  • [39] Péan, C., Merlet, C., Rotenberg, B., Madden, P. A., Taberna, P.-L., Daffos, B., … Simon, P., (2014), On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 8(2), 1576-1583.
  • [40] Zhang, Y., Cummings, P. T., (2019), Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Applied Materials & Interfaces, 11(45), 42680-42689.
  • [41] Kondrat, S., Kornyshev, A., (2010), Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter, 23(2), 022201.
  • [42] Kornyshev, A. A., (2007), Double-Layer in Ionic Liquids:  Paradigm Change? The Journal of Physical Chemistry B, 111(20), 5545-5557.
  • [43] Bazant, M. Z., Storey, B. D., Kornyshev, A. A., (2011), Double layer in ionic liquids: overscreening versus crowding. Physical Review Letters, 106(4), 046102.
  • [44] Zhu, A., Wang, J., Han, L., Fan, M., (2009), Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chemical Engineering Journal, 147(1), 27-35.
  • [45] Roy, D., Maroncelli, M., (2010), An Improved Four-Site Ionic Liquid Model. The Journal of Physical Chemistry B, 114(39), 12629-12631.