Smart in-situ thermo-responsive and ion activated ophthalmic sol-gel system of fluconazole

Smart in-situ thermo-responsive and ion activated ophthalmic sol-gel system of fluconazole

The objective of the current investigation is the development and characterization of in-situophthalmic formulation of fluconazole for sustained release at the eye site for a prolong period of time. Sol-gel fluconazole in-situformulationwaspreparedbythermo-responsivepluronicF127,Na+activatedsodiumalginatealone and in combination, characterization parameters includeFTIR spectroscopy, Visual assessment and clarity test, Gelling ability test, pH testing, drug assay, In-vitrodrug release and optimized formulation was evaluated for In-vitroantifungal studies by comparing with marketed formulation of fluconazole. Optimized formulation F8 composed of fluconazole (0.3%w/v), Pluronic F127(1%w/v), sodium alginate (0.5%w/v), sodium chloride (0.9w/v), benzalkonium Chloride (0.01%w/v) and acetate buffer pH 4 up to 100%w/v), showed drug-polymer compatibility as per FTIR, high gelling consistency on contact with simulated physiological conditions, 6.9 pH, drug assay was estimated (99.89±0.78 %) with 100% in-vitrodrug released for about 6 hours. The in-vitroantifungal study was found to be 18.87±0.65 mm; 20.76±0.23 mm in comparison to marketed fluconazole conventional gel formulation (15.98±0.98 mm; 18.98±0.76 mm) for Candida albicansand Aspergillus nigerpathogenic fungal strains respectively. Prepared in-situophthalmic sol-gel formulation of fluconazole could be considered as efficient delivery system to sustained the drug at the target site and effectively eradicating deeply rooted pathogenic fungal stains.

___

  • [1] Awwad S, Mohamed Ahmed AHA, Sharma G, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017; 174(23): 4205-4223. [CrossRef]
  • [2] Queckenberg C, Fuhr U. Influence of posture on pharmacokinetics. Eur J Clin Pharmacol. 2009; 65(2): 109-119. [CrossRef]
  • [3] Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand. 1998; 76(2): 149-153. [CrossRef]
  • [4] Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010; 12(3): 348-360. [CrossRef]
  • [5] Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016; 6(6): 735-754. [CrossRef]
  • [6] Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev. 2003; 16(4): 730-797. [CrossRef]
  • [7] Teweldemedhin M, Saravanan M, Gebreyesus A, Gebreegziabiher D. Ocular bacterial infections at Quiha Ophthalmic Hospital, Northern Ethiopia: an evaluation according to the risk factors and the antimicrobial susceptibility of bacterial isolates. BMC Infect Dis. 2017; 17(1): 207. [CrossRef]
  • [8] Ansari Z, Miller D, Galor A. Current Thoughts in Fungal Keratitis: Diagnosis and Treatment. Curr Fungal Infect Rep. 2013; 7(3): 209-218. [CrossRef]
  • [9] Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and parasitic infections of the eye. Clin Microbiol Rev. 2000; 13(4): 662-685. [CrossRef]
  • [10] Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol.2018; 16: 71. [CrossRef]
  • [11] Gooch N, Molokhia SA, Condie R. Ocular drug delivery for glaucoma management. Pharmaceutics. 2012; 4(1): 197- 211. [CrossRef]
  • [12] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. [CrossRef]
  • [13] Okura NU, Yozgatlıb V, Okurc MU, Yoltaşd A, Siafakab PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol. 2019; 49: 323– 333. [CrossRef]
  • [14] Maggi L, Friuli V, Chiesa E, et al. Improvement of the Firocoxib Dissolution Performance Using Electrospun Fibers Obtained from Different Polymer/Surfactant Associations. Int J Mol Sci. 2019; 20(12): 3084. [CrossRef]
  • [15] Cidade MT, Ramos DJ, Santos J, Carrelo H, Calero N, Borges JP. Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials (Basel).2019; 12(7): 1083. [CrossRef]
  • [16] Wickson B. Particulate Matter: USP Requirements and Particle Identification. 2019.
  • [17] Shastri D, Patel L, Parikh R. Studies on in situ Hydrogel: A Smart Way for Safe and Sustained Ocular Drug Delivery. J Young Pharm. 2010; 2(2): 116-120. [CrossRef]
  • [18] Modi G, Chandrul K, Padia M. Spectrophotometric estimation of Blonanserin in pure drug and pharmaceutical formulation. J. Chem. Pharm. Res. 2011; 3, (3): 670–675.
  • [19] Ahmed, M. M., Fatima, F., & Mohammed, A. B. Olive Oil Based Organogels for Effective Topical Delivery of Fluconazole: In-vitro Antifungal Study. JPRI.2020: 32(25), 29-36. [CrossRef]
  • [20] Davis KE, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol. 2005; 71(2): 826-834. [CrossRef]
  • [21] Irimia T, Dinu-Pîrvu CE, Ghica MV. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the- Art Review. Mar Drugs. 2018; 16(10): 373. [CrossRef]
  • [22] Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics. 2018; 10(3): 159. [CrossRef]
  • [23] Liu Y, Liu J, Zhang X, Zhang R, Huang Y, Wu C. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech. 2010; 11(2): 610-620. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Smart in-situ thermo-responsive and ion activated ophthalmic sol-gel system of fluconazole

Mohammed MUQTADER AHMED, Farhat FATIMA, Md Khalid ANWER

Phytochemical studies on the seeds, pseudofruits,and rootsof Rosa pimpinellifolia

Hasan SEÇEN, Merve BADEM, Nurettin YAYLI, Sıla Özlem ŞENER, Ufuk ÖZGEN, Gonca ÇELİK, Leyla GÜVEN

Artificial sweeteners elicit oxidative stress in rat brain and development of microcytic anemia: Promising protective effects of vitamin C

Damir SULJEVIĆ, Maja MITRAŠINOVIĆ-BRULIĆ, Saida IBRAGIĆ, Emir FEHRATOVIĆ

Chemical composition and biological activities of essential oils of Foeniculum vulgare Mill. and Daucus carota L. growing wild in Turkey

Ahmet DOĞAN, Esra YILDIRIM SERVİ, Hüseyin SERVİ, Ali ŞEN

Insights to the phase solubility diagrams of flurbiprofen with inclusion complex

Ayşe Nur OKTAY

Effect of precipitation inhibitors on supersaturation and solubility of furosemide

Aslı KARA, Selma ŞAHİN, Tuğba GÜLSÜN, Naile ÖZTÜRK, İmran VURAL

Evaluation of the knowledge, attitude, and behaviors of physicians and pharmacists regarding the use of medicines in pregnancy

Volkan AYDIN, Ahmet AKICI, Mevhibe TAMIRCI, Mehmet Zafer GOREN, Sibel SAKARYA

Interaction of OGG1 with NKX3.1 due to oxidative DNA damage

Bilge DEBELEC BUTUNER, Elif ISEL

Nanocarriers for protein and peptide delivery: Recent advances and progress

Samridhi SRIVASTAVA, Vaibhav SHARMA, Rajendra AWASTHI, Giriraj T. KULKARNI, Bharat BHUSHAN, Rishabha MALVIYA

Conceptual design and optimization of self microemulsifying drug delivery systems for dapsone by using Box-Behnken design

Aniket SHELAR, Jayashri MAHORE, Sanjeevani DESHKAR, Ghansham MORE