In vitro bioavailability studies on phytochemical profile and antioxidant activity potential of Clematis viticella L.

In vitro bioavailability studies on phytochemical profile and antioxidant activity potential of Clematis viticella L.

Since biotransformation processes generally affect the biological activities of phytochemical compounds, bioavailability is one of the primary steps in determining the potency of the activity. Previous studies have shown that in vitro antioxidant capacity of phytochemicals cannot completely reflect real health benefits. Clematis species (Ranunculaceae) are used to eliminate the symptoms of many diseases including particularly in the treatment of rheumatic diseases in Turkey, however the number of studies conducted is limited. In the light of this information, the total phytochemical profile of the extract of aerial parts of C. viticella prepared with 80% methanol and the gastrointestinal digestion products and the antioxidant activity profile were evaluated by subjecting them to the in vitro simulation model of the human digestive tract in the study. It was observed that both total phytochemical content and antioxidant activity decreased after simulated human digestion. Moreover, this study was shown potential bioaccessibility and bioavailability of total phenol, phenolic acid, flavonoid, and saponin content found in the aerial parts of Clematis viticella were reduced. Consequently, these indicate that it can result from the complicated interaction of compounds in the plant matrix in an in vitro simulated human digestion.

___

  • Baytop T, Türkiye’de Bitkiler İle Tedavi, Geçmişte ve Bugün, Nobel Tıp, İstanbul, Turkey 1999.
  • Küpeli E. PhD Thesis. Clematis vitalba L. bitkisinin romatizma tedavisindeki etkisi üzerinde çalışmalar. Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey, 2004.
  • Davis PH. Clematis. In: Davis PH. (Eds). Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, 1984, pp.138-140.
  • Chawla R, Kumar S, Sharma A. The genus Clematis (Ranunculaceae): chemical and pharmacological perspectives. J Ethnopharmacol. 2012; 143: 116-150. [CrossRef]
  • Yesilada E, Küpeli E. Clematis vitalba L. aerial part exhibits potent anti-inflammatory, antinociceptive and antipyretic effects. J Ethnopharmacol. 2007; 110: 504-515. [CrossRef]
  • Kyung KH, Woo Y, Kim DS, Park HJ, Kim YS. Antimicrobial activity of an edible wild plant, Apiifolia virgin’s bower (Clematis apiifolia DC). Food Sci Biotechnol. 2007; 16: 1051-1054.
  • Hung TM, Thuong PT, Bae K. Antioxidant effect of flavonoids isolated from the root of Clematis trichotoma Nakai. Korean J Med Crop Sci. 2005; 13(5): 227-232.
  • Peng H, Lv H, Wang Y, Liu YH, Li CY, Meng L, Chen F, Bao JK. Clematis montana lectin, a novel mannose - binding lectin from traditional Chinese medicine with antiviral and apoptosis - inducing activities. Peptides. 2009; 30: 18051815. [CrossRef]
  • Álvarez ME, María AOM, Villegas O, Saad JR. Evaluation of diuretic activity of the constituents of Clematis montevidensis Spreng. (Ranunculaceae) in rats. Phyther Res. 2003;17:958-960. [CrossRef]
  • Ho CS, Wong YH, Chiu KW. The hypotensive action of Desmodium styracifolium and Clematis chinensis. Am J Chin Med. 1989; 17(3-4): 189-202. [CrossRef]
  • Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F. Inhibition of key enzymes linked to obesity by preparations from Mediterranean dietary plants: effects on α-amylase and pancreatic lipase activities. Plant Foods Hum Nutr. 2013; 68: 340-346.
  • Hur SJ, Lim BO, Decker EA, McClements DJ. In vitro human digestion models for food applications. Food Chem. 2011; 125: 1-12. [CrossRef]
  • Alminger M, Aura AM, Bohn T, Dufour C, El SN, Gomes A, Karakaya S, Martinez-CuestaMC, McDougall GJ, Requena T, Santos CN . In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr Rev Food Sci Food Saf. 2014; 13: 413-436. [CrossRef]
  • Celep E, Akyüz S, İnan Y, Yesilada E. Assessment of potential bioavailability of major phenolic compounds in Lavandula stoechas L. ssp. stoechas. Ind Crops Prod. 2018; 118: 111-117. [CrossRef]
  • Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990; 4(9): 2587-2597. [CrossRef]
  • Koşar M, Göger F, Baser KHC. In vitro antioxidant properties and phenolic composition of Salvia virgata Jacq. from Turkey. J Agric Food Chem. 2008; 56: 2369-2374.
  • Rice-Evans C, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997; 2(4): 152159. [CrossRef]
  • Villanueva-Carvajal A, Bernal-Martínez LR, García-Gasca MT, Dominguez-Lopez A. In vitro gastrointestinal digestion of Hibiscus sabdariffa L.: the use of its natural matrix to improve the concentration of phenolic compounds in gut. LWT - Food Sci Technol. 2013; 51: 260-265. [CrossRef]
  • Celep E, Charehsaz M, Akyüz S, Acar ET, Yesilada E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Res Int. 2015; 78: 209-215. [CrossRef]
  • McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red wine - their stability under simulated gastrointestinal digestion. Phytochemistry. 2005; 66: 2540-2548. [CrossRef]
  • Kırmızıbekmez H, İnan Y, Reis R, Sipahi H, Gören AC, Yesilada E. Phenolic compounds from the aerial parts of Clematis viticella L. and their in vitro anti-inflammatory activities. Nat Prod Res. 2018: 1-4. [CrossRef]
  • Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH. Bioavailability of ginsenosides from white and red ginseng in the simulated digestion model. J Agric Food Chem. 2014; 62(41): 10055-10063.
  • Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chem. 2011; 128: 14-21. [CrossRef]
  • Siracusa L, Kulisic-Bilusic T, Politeo O, Krause I, Dejanovic B, Ruberto G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J Agric Food Chem. 2011; 59(23): 12453-12459.
  • Wong YH, Tan CP, Long K, Nyam KL. In vitro simulated digestion on the biostability of Hibiscus cannabinus L. seed extract. Czech J Food Sci. 2014; 32(2): 177-181.
  • Celep E, İnan Y, Akyüz S, Yesilada E. The bioaccessible phenolic profile and antioxidant potential of Hypericum perfoliatum L. after simulated human digestion. Ind Crops Prod. 2017; 109: 717-723. [CrossRef]
  • Kirby AJ, Schmidt RJ. The antioxidant activity of Chinese herbs for eczema and of placebo herbs - I. J Ethnopharmacol. 1997; 56: 103-108. [CrossRef]
  • Gan R-Y, Kuang L, Xu X-R, Zhang Y, Xia EQ, Song FL, Li HB. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules. 2010; 15: 5988-5997. [CrossRef]
  • Atmani D, Chaher N, Berboucha M, Ayauni K, Lounis H, Boudaoud H, Debbache N, Atmani D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009; 112: 303-309. [CrossRef]
  • Du ZZ, Yang XW, Han H, Cai XH, Luo XD. A new flavone C-glycoside from Clematis rehderiana. Molecules. 2010; 15: 672-679. [CrossRef]
  • Pandanaboina SC, Kondeti SR, Rajbanshi SL, Kunala PN, Pandanaboina S, Pandanaboina MM, Wudayagiri R. Alterations in antioxidant enzyme activities and oxidative damage in alcoholic rat tissues: Protective role of Thespesia populnea. Food Chem. 2012; 132: 150-159. [CrossRef]
  • Henning SM, Zhang Y, Rontoyanni VG, Huang J, Lee RP, Trang A, Nuernberger G, Heber D. Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: effects of in vitro digestion. J Agric Food Chem. 2014; 62: 4313-4321. [CrossRef]
  • Singleton VL, Rossi JAJ. Colorimetry of total phenolics with phosphomolybdic - phosphotungstic acids reagents. Amer J Enol Viticult. 1965; 16: 144-158.
  • Mihailović V, Kreft S, Benković ET, Ivanović N, Stanković MS. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind Crops Prod. 2016; 89: 141-151. [CrossRef]
  • Woisky RG, Salatino A. Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res. 1998; 37(2): 99-105. [CrossRef]
  • Ariffin F, Heong Chew S, Bhupinder K, Karim AA, Huda N. Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas. J Sci Food Agric. 2011; 91: 2731-2739. [CrossRef]
  • Hiai S, Oura H, Nakajima T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med. 1976; 29: 116-122.
  • Gayoso L, Claerbout AS, Calvo MI, Cavero RY, Astiasarán I, Ansorena D. Bioaccessibility of rutin, caffeic acid and rosmarinic acid: influence of the in vitro gastrointestinal digestion models. J Funct Foods. 2016; 26: 428-438. [CrossRef]
  • Akter MS, Ahmed M, Eun JB. Solvent effects on antioxidant properties of persimmon (Diospyros kaki L. cv. Daebong) seeds. Int J Food Sci Technol. 2010; 45: 2258-2264. [CrossRef]
  • Celep E, Aydin A, Yesilada E. A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem Toxicol. 2012; 50: 3329-3335. [CrossRef]
  • Fogliano V, Verde V, Randazzo G, Ritieni A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem. 1999; 47: 1035-1040.
  • Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal Biochem. 1996; 239: 70-76. [CrossRef]
  • Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004; 52: 7970-7981.
  • Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269: 337341. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Antioxidant and anti-inflammatory potentials of Solanum pubescens Willd an ethnomedicinal plant of South Western Andhra Pradesh, India

Haseebur RAHMAN, Nazneen RAHMAN, Mir HARIS, Riaz MAHMOOD

In vitro bioavailability studies on phytochemical profile and antioxidant activity potential of Clematis viticella L.

Esra ACAR ŞAH, Engin CELEP, Erdem YEŞİLADA

Blood pressure lowering effect of scopoletin on oxidative stress-associated hypertensive rats

Meiliani MEILIANI, Yori YULIANDRA, Rahman HIDAYAT, Armenia ARMENİA

Elucidation of biological properties of some commercial anthraquinones: Mutagenic / antimutagenic and antimicrobial activity approaches

Erdoğan GÜNEŞ, Ahmet UYSAL, Yusuf DURAK

Spectrophotometry, potentiometry and HPLC in determination of acidity constant for cabergoline and tadalafil

Ayşegül DOĞAN, Merve Banu POLAT, Nursabah E. BAŞCI

The percentage of depressive symptoms in patients with type 2 Diabetes Mellitus in M Djamil General Hospital Padang, Indonesia

Dwisari DILLASAMOLA, Alexander KAM, Eva DECROLİ

Modeling to predict the cytotoxicity of SiO2 and TiO2 nanoparticles

Ali SHAYANFAR, Samira JAFARI

Scylla serrata Forskal as natural source of glucosamine hydrochloride

Muammar FAWWAZ, Indah MUTMAINNAH, Muzakkir BAITS, Pipin VEMILIA

Patient counseling, risk factors and comorbidity assessment in diabetic foot ulcer

Smithamol SUNNY, Anita ANN SUNNY, Rama PARTHASARATHY, Shanmugasundaram RAJESHKUMAR, Swathy PRADEEP

Analgesic, anti-inflammatory and anti-pyretic activities of methanolic extract of Cordyline fruticosa (L.) A. Chev. leaves

S.M. Mushiur RAHMAN, Sharmin NAHER, Md. Abdullah AZIZ, Mst. Irin AKTER, Sadiur Rahman SAJON