Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs

Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs

The number of studies conducted with liposomes to reduce side effects in systemic administration of chemotherapeutic agents is increasing day by day. One of these chemotherapeutic agents, 5-Fluorouracil (5-FU) is a good candidate for encapsulating into the liposomes; however, it has been difficult to obtain liposomal 5-FU with high encapsulation efficiency. The various factors such as preparation method (thin film hydration method and passive loading with small volume incubation method), drug amount (10 mg, 7.5 mg, and 5 mg), hydration volume (3.5 mL and 2 ml), and incubation volume (2 mL and 1 mL) were investigated to optimize the formulation of 5-FU encapsulated liposomes. Liposomes were characterized according to particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE%). The in vitro release study was carried out using Franz diffusion cell. Based on the optimization of formulation, the average drug EE% and the mean particle size of 5-FU-loaded liposomes were found to be 25% and 188.6 nm. In vitro drug release of 5-FU-loaded liposomes (SVI-4) presented a biphasic release of 5-FU, and this behavior was in accordance with the first-order equation. According to the results, 5-FU can be effectively loaded into liposomes prepared by passive loading with small volume incubation method.

___

  • [1] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and Radiation Therapy: Current Advances and Future Directions. Int J Med Sci. 2012; 9(3): 193–199.
  • [2] Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci. 2013; 8(2): 81-87. [CrossRef]
  • [3] Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020; 318: 256-263. [CrossRef]
  • [4] Sarafa S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol. 2020; 56: 101549. [CrossRef]
  • [5] Yang Z, Liu J, Gao J, Chen S, Huang G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int J Pharm. 2015; 495(1): 508-515. [CrossRef]
  • [6] Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res. 2018; 41(1): 1-13. [CrossRef]
  • [7] Riviere K, Kieler-Ferguson HM, Jerger K, Szoka Jr FC. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J Control Release. 2011; 153(3): 288-296. [CrossRef]
  • [8] Eloy JO, Claro de Souza M, Petrilli R, Barcellos JP, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces. 2014; 123: 345-363. [CrossRef]
  • [9] Varona S, Martín A, Cocero MJ. Liposomal Incorporation of Lavandin Essential Oil by a Thin-Film Hydration Method and by Particles from Gas-Saturated Solutions. Ind Eng Chem Res. 2011; 50: 2088-2097. [CrossRef]
  • [10] Xu H, Paxton J, Lim J, Li Y, Zhang W, Duxfield L, Wu Z. Development of high-content gemcitabine PEGylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharm Res. 2014; 31(10): 2583-2592. [CrossRef]
  • [11] Bisht S, Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4): 415-425. [CrossRef]
  • [12] Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effect. Adv Drug Deliv Rev. 2011; 63(3): 161-169. [CrossRef]
  • [13] Caracciolo, G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale. 2018;10(9): 4167-4172. [CrossRef]
  • [14] Xu X, Khan MA, Burgess DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012;423(2): 410-418. [CrossRef]
  • [15] Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, Hincal AA. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005; 291(1-2): 79-86. [CrossRef]
  • [16] Sabbagh CA, Tsapis N, Novell A, Calleja-Gonzalez P, Escoffre JM, Bouakaz A, Chacun H, Denis S, Vergnaud J, Gueutin C, Fattal E. Formulation and pharmacokinetics of thermosensitive stealth® liposomes encapsulating 5- Fluorouracil. Pharm Res. 2015; 32(5): 1585-1603. [CrossRef]
  • [17] Mishra GP, Kinser R, Wierzbicki IH, Alany RG, Alani AWG. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. Eur J Pharm Biopharm. 2014; 88(2): 397-405. [CrossRef]
  • [18] Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015; 5(1): 79-88. [CrossRef]
  • [19] Alomrani A, Badran M, Harisa GI, ALshehry M, Alhariri M, Alshamsan A, Alkholief M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm J. 2019; 27(5): 603-611. [CrossRef]
  • [20] Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J Biomater Sci Polym Ed. 2020; 31(9): 1107-1126. [CrossRef]
  • [21] AlQahtani SA, Harisa GI, Badran MM, AlGhamdi KM, Kumar A, Salem-Bekhit MM, Ahmad SF, Alanazi FK. Nanoerythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2019;47(1): 989-996. [CrossRef]
  • [22] Na YG, Jeon SH, Byeon JJ, Kim MK, Lee HK, Cho CW. Application of statistical design on the early development of sustained-release tablet containing ivy leaf extract. J Drug Deliv Sci Technol. 2019; 54: 101319. [CrossRef]
  • [23] Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol. 2019; 133: 148-155. [CrossRef]
  • [24] Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol. 2018; 23(1): 76-86. [CrossRef]
  • [25] Zorec B, Zupančič Š, Kristl J, Pavšelj N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur J Pharm Biopharm. 2018; 127: 387-397. [CrossRef]
  • [26] Tamam H, Park J, Gadalla HH, Masters AR, Abdel-Aleem JA, Abdelrahman SI, Abdelrahman AA, Lyle LT, Yeo Y. Development of Liposomal Gemcitabine with High Drug Loading Capacity. Mol Pharm. 2019; 16(7): 2858-2871. [CrossRef]
  • [27] Chaudhury A, Das S, Lee RFS, Tan KB, Ng WK, Tan RBH, Chiu GNC. Lyophilization of cholesterol-free PEGylated liposomes and its impact on drug loading by passive equilibration. Int J Pharm. 2012; 430(1-2): 167-175. [CrossRef]
  • [28] Hinna A, Steiniger F, Hupfeld S, Stein P, Kuntsche J, Brandl M. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J Liposome Res. 2016; 26(1): 11-20. [CrossRef]
  • [29] Adamczak MI, Martinsen ØG, Smistad G, Hiorth M. Polymer coated mucoadhesive liposomes intended for the management of xerostomia. Int J Pharm. 2017; 527(1-2): 72-78. [CrossRef]
  • [30] Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm. 2018; 548(1): 255-262. [CrossRef]
  • [31] Sanchez-Vazquez B, Lee JB, Strimaite M, Buanz A, Bailey R, Gershkovich P, Pasparakis G, Williams GR. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int J Pharm. 2019; 572: 118784. [CrossRef]
  • [32] Mattos ACd, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5- fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci. 2016; 84: 83-91. [CrossRef]
  • [33] Andrade LM, Reis CF, Maione-Silva L, Anjos JLV, Alonso A, Serpa RC, Marreto RN, Lima EM, Taveira SF. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014; 88(1): 40-47. [CrossRef]
  • [34] Shah RM, Eldridge DS, Palombo EA, Harding IH. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. Int J Pharm. 2016;515(1-2): 543-554. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Anticancer effect of the letrozole-quercetin combinationmediated by FOXOs and estrogen receptors in breast cancercells.

Özge ÇEVİK, Yeter ÇİLESİZ

Comparison of the apoptotic effects of bortezomib using2D and 3D co-culture models of THP-1 derived macrophageand A549 lung cancer

Miriş DİKMEN, Zerrin CANTÜRK, Selin ENGÜR ÖZTÜRK, Elif KAYA TİLKİ

Nephroprotective effect of ethanol extract of Sonchusarvensis L. leaves in gentamicin-piroxicam induced ratrenal failure

Nova SULISKA, Mefani PRAVISKA, Neng Fisheri KURNIATI, Elin Yulinah SUKANDAR

Development and in-vitro evaluation of chitosan chloridedecorated PLGA based polymeric nanoparticles ofnimesulide

Ceyda Tuba SENGEL-TÜRK, Bilge BAYRAM

Lenalidomide beneficially alters IL-16 methylation statusand IL-16 levels under rotenone insult in N9 cells

Fatma Nihan CANKARA, Zülfinaz Betül ÇELİK, Caner GÜNAYDIN

Engineering of pH-sensitive, cross-linked micelles for drugdelivery

Ömer Aydın

Comparative morphological and anatomical investigationson Corydalis caucasica subsp. abantensis Lidén andCorydalis integra Barbey & Fors.-Major (Papaveraceae)from Turkey

Bülent OLCAY, Şükran KÜLTÜR

A comparative study of cationic liposomes for genedelivery

Hasan AKBABA, Gülşah EREL-AKBABA

Volatiles and fatty acid analyzes of Tripleurospermumdecipiens (Fisch & C. A. Mey) Bornm and investigation ofthe extracts for antimicrobial and enzyme inhibitoryactivities

Yavuz Bülent KÖSE, Gülmira ÖZEK, Süleyman YUR, Gamze GÖGER, İrem YAVAŞ

Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs

Tahir Emre YALÇIN, Aysel YILMAZ, Ceren YETGİN