Dendritic cell-based COVID-19 vaccines: A mini review

Dendritic cell-based COVID-19 vaccines: A mini review

Immunotherapy is the latest approach that could offer potential treatments to help fight the 2019 coronavirus disease (COVID-19). This approach can be achieved by several strategies, including dendritic cell-based vaccine therapy. The method of using dendritic cells aims to build a person's immunity against the SARS-CoV-2 virus (the virus that causes COVID-19). In theory, this vaccine works by taking dendritic cells from a person. These cells are then introduced to the antigen of the SARS-COV-2 virus in the laboratory, then injected back into the body in the hope that the dendritic cells that have recognized the virus will trigger an immune response. Several clinical trials are being conducted using the dendritic cell-based vaccine therapy, one of the vaccine candidates known to use a dendritic cell platform developed in Indonesia. The WHO-registered dendritic cell-based COVID-19 vaccine from Indonesia was carried out by AIVITA Biomedical, the Health Research and Development Agency, and the Indonesian Ministry of Health. This article discussed how approved vaccines can trigger innate immunity to enhance long-lasting immunological memory and consider future implications for protecting populations with this vaccine.

___

  • [1] Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19: 141–154.
  • [2] Nishiura H, Jung SM, Linton NM, Kinoshita R, Yang Y, Hayashi K, Kobayashi T, Yuan B, Akhmetzhanov AR. The extent of transmission of novel coronavirus in Wuhan, China, 2020.J Clin Med.2020; 9(330): 1–5.
  • [3] Baloch S, Baloch MA, Zheng T, Pei X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020; 250(4): 271–278.
  • [4] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med. 2020; 382(8): 727–733.
  • [5] Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020; 181:914-921.
  • [6] WHODraft landscape and tracker of COVID-19 candidate vaccines 2021. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines, (accessed on 21 May 2021).
  • [7] Ashraf MU, Kim Y, Kumar S, Seo D, Ashraf M, Bae YS. COVID-19 vaccines (revisited) and oral-mucosal vector system as a potential vaccine platform. Vaccines. 2021; 9(171): 1-24.
  • [8] ClinicalTrials.gov Dendritic cell vaccine, AV-COVID-19, to prevent COVID-19 infection 2021.https://www.clinicaltrials.gov/ct2/show/NCT04690387, (accessed on 19 May 2021).
  • [9] Zhang C, Zhou C, Shi L, Liu G. Perspectives on development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hum. Vaccines Immunother. 2020; 16(10): 2366–2369.
  • [10] Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W, Zhang Y, Qin C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020; 369(6499): 77–81.
  • [11] Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, Li M, Jin H, Cui G, Chen P, Wang L, Zhao G, Ding Y, Zhao Y, Yin W. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021; 21(6): 803-12.
  • [12] Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Hu Y, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q, Zhu F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis.2021; 21(2): 181–92.
  • [13] Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B, Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y, Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021; 21(1): 39–51.
  • [14] Barrett JR, Belij-Rammerstorfer S, Dold C, Ewer KJ, Folegatti PM, Gilbride C, Halkerston R, Hill J, Jenkin D, Stockdale L, Verheul MK, Aley PK, Angus B, Bellamy D, Berrie E, Bibi S, Bittaye M, Carroll MW, Cavell B, Clutterbuck EA, Edwards N, Flaxman A, Fuskova M, Gorringe A, Hallis B, Kerridge S, Lawrie AM, Linder A, Liu X, Madhavan M, Makinson R, Mellors J, Minassian A, Moore M, Mujadidi Y, Plested E, Poulton I, Ramasamy MN, Robinson H, Rollier CS, Song R, Snape MD, Tarrant R, Taylor S, Thomas KM, Voysey M, Watson MEE, Wright D, Douglas AD, Green CM, Hill AVS, Lambe T, Gilbert S, Pollard AJ; Oxford COVID Vaccine Trial Group. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nat Med. 2021; 27: 279– 288.
  • [15] Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R, Morter R, Flaxman A, Wright D, Bellamy D, Bittaye M, Dold C, Provine NM, Aboagye J, Fowler J, Silk SE, Alderson J, Aley PK, Angus B, Berrie E, Bibi S, Cicconi P, Clutterbuck EA, Chelysheva I, Folegatti PM, Fuskova M, Green CM, Jenkin D, Kerridge S, Lawrie A, Minassian AM, Moore M, Mujadidi Y, Plested E, Poulton I, Ramasamy MN, Robinson H, Song R, Snape MD, Tarrant R, Voysey M, Watson MEE, Douglas AD, Hill AVS, Gilbert SC, Pollard AJ, Lambe T; Oxford COVID Vaccine Trial Group. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med. 2021; 27: 270–278.
  • [16] Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, Belij-Rammerstorfer S, Berry L, Bibi S, Bittaye M, Cathie K, Chappell H, Charlton S, Cicconi P, Clutterbuck EA, Colin-Jones R, Dold C, Emary KRW, Fedosyuk S, Fuskova M, Gbesemete D, Green C, Hallis B, Hou MM, Jenkin D, Joe CCD, Kelly EJ, Kerridge S, Lawrie AM, Lelliott A, Lwin MN, Makinson R, Marchevsky NG, Mujadidi Y, Munro APS, Pacurar M, Plested E, Rand J, Rawlinson T, Rhead S, Robinson H, Ritchie AJ, Ross-Russell AL, Saich S, Singh N, Smith CC, Snape MD, Song R, Tarrant R, Themistocleous Y, Thomas KM, Villafana TL, Warren SC, Watson MEE, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Faust SN, Pollard AJ; Oxford COVID Vaccine Trial Group. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020; 396(10267): 1979–1993.
  • [17] Mahase E. AstraZeneca vaccine: blood clots are ‘extremely rare’ and benefits outweigh risks, regulators conclude. BMJ. 2021; 373: 931.
  • [18] Wise J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. BMJ. 2021; 372: 699.
  • [19] Ledford H. COVID vaccines and blood clots: fivekey questions. Nature. 2021; 592: 495–496.
  • [20] MacNeil JR, Su JR, Broder KR, Guh AY, Gargano JW, Wallace M, et al. Updated recommendations from the advisory committee on immunization practices for use of the janssen (Johnson & Johnson) COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome among vaccine recipients — United States, April 2021. MMWR. 2021; 70(17): 651–656.
  • [21] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D, Brachtendorf S, Lörks V, Sikorski J, Hilker R, Becker D, Eller AK, Grützner J, Boesler C, Rosenbaum C, Kühnle MC, Luxemburger U, Kemmer-Brück A, Langer D, Bexon M, Bolte S, Karikó K, Palanche T, Fischer B, Schultz A, Shi PY, Fontes-Garfias C, Perez JL, Swanson KA, Loschko J, Scully IL, Cutler M, Kalina W, Kyratsous CA, Cooper D, Dormitzer PR, Jansen KU, Türeci Ö. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020; 586(7830): 594–599.
  • [22] Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Walsh EE, Frenck R, Falsey AR, Dormitzer PR, Gruber WC, Şahin U, Jansen KU. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020; 586(7830): 589–593.
  • [23] Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, Bailey R, Swanson KA, Xu X, Roychoudhury S, Koury K, Bouguermouh S, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Yang Q, Liberator P, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Gruber WC, Jansen KU; C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383(27): 2603–2615.
  • [24] Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. Safety and immunogenicity of two RNA-Based Covid-19 vaccine candidates. N Engl J Med. 2020; 383(25): 2439–2450.
  • [25] Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B, Leav B; mRNA-1273 Study Group. preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021; 39(20): 2791–2799.
  • [26] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5): 403–416.
  • [27] Guebre-Xabier M, Patel N, Tian JH, Zhou B, Maciejewski S, Lam K, Portnoff AD, Massare MJ, Frieman MB, Piedra PA, Ellingsworth L, Glenn G, Smith G. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020; 38(50): 7892–7896.
  • [28] Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. NEnglJMed. 2020; 383(24): 2320–2332.
  • [29] Berges C, Naujokat C, Tinapp S, Wieczorek H, Höh A, Sadeghi M, Opelz G, Daniel V. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun. 2005; 333(3): 896–907.
  • [30] Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000; 18: 767–811.
  • [31] Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392(6673): 245–252.
  • [32] Granucci F, Zanoni I. The dendritic cell life cycle. Cell Cycle. 2009; 8(23): 3816–3821.
  • [33] Schultze JL, Aschenbrenner AC. Systems immunology allows a new view on human dendritic cells. Semin Cell Dev Biol. 2018; 86: 15–23.
  • [34] Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology. 2021: 1–12.
  • [35] Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. Int Rev Immunol. 2021; 40(1-2): 108–125.
  • [36] Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 2012; 7(4): 1–8. .
  • [37] Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat RevImmunol.2010; 10: 514–526.
  • [38] Cervantes-Barragan L, Züst R, Weber F, Spiegel M, Lang KS, Akira S, Thiel V, Ludewig B. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood. 2007; 109(3): 1131–1137.
  • [39] Schmitz ML, Kracht M, Saul VV. The intricate interplay between RNA viruses and NF-κB. Biochimica et Biophysica Acta. 2014; 1843(11): 2754–2764.
  • [40] Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses.Annu Rev Immunol. 2014; 32(1): 513–545.
  • [41] ClinicalTrials.gov Phase I-II trial of dendritic cell vaccine to prevent COVID-19 in adults 2021.https://clinicaltrials.gov/ct2/show/NCT04386252,(accessed on 19 May 2021).
  • [42] van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020; 19: 810–812.
  • [43] Saadeldin MK, Abdel-Aziz AK, Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end ofcancer and COVID-19. A hypothesis. Med Hypotheses. 2021; 146: 110365.
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

COVID-19 pandemic and the healthcare workers- The call of duty

Narendar KUMAR, Shaib MUHAMMAD, Geeta KUMARI, Razia SULTANA, Muhammad Saleh KHASKHELI, Jabbar ABBAS, Rafia TABASSUM, Sadaf Hayat LAGHARI

Assessment of some prescribed drugs in the management of COVID-19 on the survival function: A preliminary report from a single center in Iraq

Marwan Salih AL-NIMER, Talar Ahmad MERZA

In vitro studies for BCS classification of an antiviral agent, favipiravir

Hakan EROĞLU, Selin Seda TİMUR, Meltem ATAŞOĞLU, Yalçın ÖNER, Tutku Ceren KARABULUT

Bioflavonoids as potential target inhibitors in COVID-19: An in silico analysis

Uma Sankar GORLA, Koteswara Rao GSN, Umasankar KULANDAIVELU, Rajasekhar Reddy ALAVALA, Subham DAS, Alex JOSEPH

Association between COVID-19 and psychological disorders with possible mechanisms

Mohammad Salim HOSSAIN, Sworadip CHOWDHURY, Hoimonti DEBI, Mohammad Tohidul AMIN, Sujan BANIK, Fahad HUSSAIN

A recent update of anticoagulant therapy on severe COVID-19 patients

Taofik RUSDIANA, Norisca Aliza PUTRIANA, Patihul HUSNI, Mohammad Rizki AKBAR, Takuya ARAKI, Anas SUBARNAS

The role of community pharmacists during the COVID-19 pandemic in the U.S.

Mehmed Bülend UĞUR, İrem Tutku ASLANBAY, Zeynep Sena MUŞ

Pyrazine-chromene-3-carbohydrazide conjugates: Molecular docking and ADMET predictions on dualacting compounds against SARS-CoV-2 Mpro and RdRp

Arif MERMER, Serhii VAKAL

Molecular docking, molecular dynamic and drug-likeness studies of natural flavonoids as inhibitors for SARS-CoV-2 main protease (Mpro)

Listiana OKTAVIA, Praptiwi PRAPTIWI, Andria AGUSTA

A new frontier: Navigating hospital pharmacy practice during the COVID-19 pandemic

Nora BAIRAGDAR, Abigail Dee ANTIGUA, Mohammed AL-SAID, A Kacee BARNETT, Kayihura MANIGABA