Sürdürülebilir Şehirler için Çatı Entegre Fotovoltaik Sistemlerin Değerlendirilmesi

Çevresel, sosyal ve ekonomik açıdan esnekliği olan topluluklar içinde yaşamak isteyen nüfus gün geçtikçe artmakta ve bu sebeple sürdürülebilir şehirler son zamanlarda daha popüler olmaktadır. Özellikle, doğal kaynakların tükenme sınırında olduğu ve sera gazı salınımının inkâr edilemez bir tehdit haline dönüştüğü yerlerde, topluluklar için sürdürülebilirlik hedefleri oluşturulması hayati önem taşımaktadır. Şehir nüfusu için sürdürülebilir topluluklar yaratılmasının anahtarı yenilenebilir kaynaklar kullanılarak ucuz, ulaşılabilir, temiz ve güvenilir enerji sağlanmasıdır. Bu çalışma, belirtilen amaçlar doğrultusunda şehirlerdeki enerji ihtiyacını karşılamak üzere son kullanıcı tarafından kurulan ve kullanılan, çatıya entegre edilerek ışığa maruz kaldığında elektrik üreten fotovoltaik sistemlere odaklanmaktadır. Çalışmada, bu teknolojilere yatırım yapılmasının gerekliliğini ölçmek amacıyla İstanbul’da bir gerçek hayat çalışması yürütülerek finansal değerlendirmeler yapılmıştır. Elde edilen sonuçlar, çevresel faydalarına rağmen ilgili sistemin geri ödeme periyodunun yatırımcı açısından uzunluğunu ortaya çıkarmış ve hükümet tarafından ek teşviklerin sağlanması gerekliliğini vurgulamıştır.

ROOF-TOP INTEGRATED PHOTOVOLTAIC ASSESSMENT FOR SUSTAINABLE CITIES

Sustainable cities become more popular in recent years, due to increasing amount of people who demand to live in communities which are environmentally, socially and economically resilient. Especially, in a world, where natural sources are at the edge of depletion and the threat of greenhouse gas emissions ecomes undeniable, setting sustainability goals for communities plays a vital role. Providing cheap, accessible, clean and reliable energy for the inhabitants of cities by using renewable sources is the key to create sustainable communities. This paper focuses on roof-top integrated photovoltaic systems which are installed and operated by end-users to meet the needs of power in cities. A case study is conducted in Istanbul to make financial assessments in order to find out whether it is worth for investing such technologies. The results and discussions reveal that despite environmental benefits, the payback period of such systems is too high for an investor, which leads to the fact that additional incentives must be provided by the Turkish government.

___

  • Amponsah, N.Y., Troldborg, m., Kington, B., (2014), Greenhouse gas emissions from renewable energy sources: A review of life cycle consideration, Renewable and Sustainable Energy Reviews 39, 461- 475. Armendariz-Lopez, J.F., Luna-Leon, A., Gonzalez-Trevizo, M.E., Arena-Granados, A.P., Bojorquez-Morales, G., (2016), Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico, Renewable Energy, 87, 564-571. Asl-Soleimani, E., Farhangi, S., Zabihi, M., (2013), The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran, Renewable Energy, 74, 459-468. Bento, J.P.D., Moutinho, V., (2016), CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy, Renewable and Sustainable Energy Reviews, 55, 142-155. Capello, R., Nijkamp, P., Pepping, G., (1999), Sustainable Cities and Energy Policies, Springer, Berlin Cruz, R.V., Amado, M.P., (2015), Costruction of a Sustainable Island City: The case of Cape Verde, Energy Procedia, 74, 1476-1489. Dimakis, A.A., Biberacher, B., Dominguez, J., Fiorese, G., Gadocha, S., Gnansounou, E., Guariso, G., Kartalidis, A., Panichelli, L., Pinedo, I., Robba, M., (2011), Methods and tools to evaluate the availability of renewable energy sources, Renewable and Sustainable Energy Reviews, 15(2), 1182- 1200. Evans, A., Strezov, V., Evans, T.J., (2009), Assessment of sustainability indicators for renewable energy technologies, Renewable and Sustainable Energy Reviews, 13, 1082-1088 Hiraoka, S., Fujii, T., Takakura, H., Hamakawa, Y., (2003), Tilt angle dependence of output power in an 80 kWp hybrid PV system installed at Shiga in Japan, Solar Energy Materials and Solar Cells, 75, 781- 786. Hussein, H.M.S., Ahmad, G.E., El-Ghetany, H.H., (2001), Performance evaluation of photovoltaic modules at different tilt angles and orientations, Energy Conversion Management, 45, 2441-2452. Ibrahim, F.I., Omar, D., Mohamad, N.H.N., (2015), Theoretical Review of Sustainable City Indicators in Malysia, Procedia - Social and Behavioral Sciences, 202, 322-329. Kuhlman, T., Farrington, J., 2010, What is sustainability?, Sustainability, 2(11), 3436-3448. Longa, S., Gengb, S, (2015), Decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment, Energy Conversion and Management, 106, 1245-1250. Mirhassania, S.,Onga, H.C., W.T. Chonga, K.Y. Leong, (2015), Advances and challenges in grid tied photovoltaic systems, Renewable and Sustainable Energy Reviews, 49, 121-131. Nakamura, H., Yamada, T., Sugiura, T., Sakuta, K., Kurokawa, K., (2001), Data analysis on solar irradiance and performance characteristics of solar modules with a test facility of various tilted angles and directions, Solar Energy Materials and Solar Cells 67, 591-600. OECD, (2010), Cities and Climate Change, OECD Publishing. Orioli, A., Gangi, A.D., (2015), The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts, Energy, 93(2), 1989-2005. R Wilson, A. Young, (1996), The embodied energy payback period of photovoltaic installations applied to buildings in the UK, Building and Environment, 31 (4), 299–305. Siemens, (2014), Sustainable Energy in the U.S. [online] Available at: http://www.usa.siemens.com/ sustainable-energy/ [Accessed: 18 November 2014].