DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid

DQ Model of PMSG with The Most Proficient Dynamic Analysis in Standalone Grid

The pico grid implements an essential solution to provide electrical power for isolated areas like villages and remote regions. Wind, tidal or hydropower, etc., may be the energy source for these grids. This application can be effectively served by a permanent magnet synchronous generator (PMSG), which is a very convenient option. In this work, the generator's prime mover is a regular speed source that mimics a pico-hydro turbine. Using park transformation, the dynamic model was built and employed in Matlab/Simulink to study the system's response with different perturbations for operation at constant and variable of load, rotor speed, and flux. The results of the proposed system model show a smooth voltage and current output.

___

  • Anbarasan, P., Venmathi, M., & Krishnakumar, V. (2021). Modeling and Simulation of Standalone PMSG based Wind Energy Conversion System with Common Mode Voltage Suppression. 2021 7th International Conference on Electrical Energy Systems (ICEES), 85–88. https://doi.org/10.1109/ICEES51510.2021.9383728
  • Binwu, & Kouro, Y. L. N. Z. S. (2011). Power Conversion And Control Of Wind Energy Systems. A John Wiley & Sons, Inc., Publication. https://ieeexplore.ieee.org/servlet/opac?bknumber=6047595
  • Bisoyi, S. K. (2013). Modeling and Analysis of Variable Speed Wind Turbine equipped with PMSG. International Journal of Current Engineering and Technology, 2(2), 421–426. https://doi.org/10.14741/ijcet/spl.2.2014.78
  • Chandran, V. P., Murshid, S., & Singh, B. (2018). Voltage and Frequency Control with Load Levelling of PMSG Based Small-Hydro System. India International Conference on Power Electronics, IICPE, 2018-Decem, 1–6. https://doi.org/10.1109/IICPE.2018.8709475
  • Denny, M. (2004). The efficiency of overshot and undershot waterwheels. European Journal of Physics, 25(2), 193– 202. https://doi.org/10.1088/0143-0807/25/2/006
  • Eduardo, R., & Palomo, Q. (2019). Wrocław University of Science and Technology Faculty of Electrical Engineering PhD Thesis. F. AL Kababjie, P. D. M., & H. Hamdon, W. (2013). Performance Evaluation study of Hybrid Generation System (Microhydro + Diesel) in Iraqi Remote Rural Electrification_ENG. AL-Rafdain Engineering Journal (AREJ), 21(2), 32– 41. https://doi.org/10.33899/rengj.2013.72823
  • Fateh, L., Ahmed, O., Amar, O., Abdelhak, D., & Lakhdar, B. (2016). Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system. Frontiers in Energy, 10(2), 155–163. https://doi.org/10.1007/s11708-016-0410-1
  • Fukami, T., Hayamizu, T., Matsui, Y., & Member, S. (2010). Steady-State Analysis of a Permanent-Magnet- Assisted Salient-Pole Synchronous Generator. 25(2), 388–393.
  • Ghanim, A. S., Alnaib, I. I., & Bassamaziz, A. (2022). DQ Model of Three Phase Isolated Induction Generator using Matlab DQ Model of Three Phase Isolated Induction Generator using Matlab. October.
  • Ghanim, A. S., & Alsammak, A. N. B. (2020). Modelling and Simulation of Self-Excited Induction Generator Driven By a Wind Turbine. Eastern-European Journal of Enterprise Technologies, 6(8), 6–16. https://doi.org/10.15587/1729- 4061.2020.213246
  • Hossain, E., Hossain, J., Sakib, N., & Bayindir, R. (2017). Mdelling and simulation of permanent magnet synchoronous generator wind turbine: A step to microgrid technology. International Journal of Renewable Energy Research, 7(1), 1– 8. https://doi.org/10.20508/ijrer.v7i1.5615.g7013
  • Kamruzzaman Khan Prince, M., T. Arif, M., Gargoom, A., M. T. Oo, A., & Enamul Haque, M. (2021). Modeling, Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System. Journal of Modern Power Systems and Clean Energy, 9(5), 1054–1065. https://doi.org/10.35833/MPCE.2020.000601
  • Mohan, M., & Vittal, K. P. (2018). Modeling and Simulation of PMSG-Based Wind Power Generation System. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1, 57–62. https://doi.org/10.1109/RTEICT42901.2018.9012620
  • Murali Krishna, V. B., Duvvuri, S. S., Yadlapati, K., Pidikiti, T., &Sudheer, P. (2022). Deployment and performance measurement of renewable energy based permanent magnet synchronous generator system. Measurement: Sensors, 24(August), 100478. https://doi.org/10.1016/j.measen.2022.100478
  • Praptodiyono, S., Maghfiroh, H., Nizam, M., Hermanu, C., & Wibowo, A. (2021). Design and Prototyping of Electronic Load Controller for Pico Hydropower System. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(3), 461. https://doi.org/10.26555/jiteki.v7i3.22271
  • Quintal-Palomo, R. E., Flota-Banuelos, M., Bassam, A., Peon-Escalante, R., Penunuri, F., & Dybkowski, M. (2021). Post-Fault Demagnetization of a PMSG Under Field Oriented Control Operation. IEEE Access, 9, 53838–53848. https://doi.org/10.1109/ACCESS.2021.3070531
  • Quintal-Palomo, R. E., Gwozdziewicz, M., & Dybkowski, M. (2019). Modelling and co-simulation of a permanent magnet synchronous generator. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 38(6), 1904–1917. https://doi.org/10.1108/COMPEL-12-2018-0501
  • Uršič, L., & Nemec, M. (2019). Permanent magnet synchronous machine demagnetisation prevention and torque estimation control considering rotor temperature. IET Power Electronics, 12(9), 2161–2169. https://doi