Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients

In this paper, we obtain certain distribution formulae of the solute in transport of the typical advection-dispersion of air pollution through separation in two-dimensional space variables by introducing different wind velocities and dispersion coefficients. As a consequence, by introducing different values of the solute velocity and dispersion coefficients, we evaluate the solute distribution formulae of the air pollution in terms of various known and unknown special functions.

___

  • S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, Springer, Switzerland, 2016.
  • S. R. Hanna, Review of Atmospheric Diffusion Models for Regulatory Applications, World Meteorological Organization (WMO), Technical Note No. 177, WMO No. 581, Geneva, Switzerland, 1982.
  • S. R. Hanna, G. A. Briggs, R. P. Hosker, Handbook on Atmospheric Diffusion, Technical Information Center U. S. Department of Energy, Technical Report No. DOE/TIC-11223, United States, 1982.
  • R. M. Harrison, R. Perry, Handbook of Air Pollution Analysis, Chapman and Hall and Methuen, New York, 1986.
  • T. J. Lyons, W. D. Scott, Principles of Air Pollution Meteorology, CBS Publishers and Distributers, New Delhi, 1992.
  • F. Liu, I. Turner, V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coatal Aquifer, Korean Journal of Computational & Applied Mathematics 9 (2002) 391–407.
  • F. Liu, I. Turner, V. Anh, N. Su, A Two-dimensional Finite Volume Method for Transient Simulation of Time- and Scale-dependent Transport in Heterogeneous Aquifer Systems, Journal of Applied Mathematics and Computing 11 (2003) 215–241.
  • H. Kumar, On Three Dimensional Legendre Sturm Liouville Diffusion and Wave Problem Generated due to Fractional Derivative, Jnanabha 48 (1) (2018) 129–141.
  • H. Kumar, S. K. Rai, On a Fractional Time Derivative and Multi-dimensional Space Evolution Bessel Sturm Liouville Diffusion and Wave Problem, Jnanabha Special Issue (2018) 61–71.
  • H. Kumar, M. A. Pathan, S. K. Rai, On Certain Solutions of a Generalized Perl’s Vector Equation Involving Fractional Time Derivative, Montes Taurus Journal of Pure and Applied Mathematics 1 (2) (2019) 42–57.
  • H. Kumar, S. K. Rai, Multiple Fractional Diffusions via Multivariable H-function, Jnanabha 50 (1) (2020) 253–264. [12] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 1986.
  • H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, John Wiley and Sons, New York, 1984.
  • H. Kumar, S. P. S. Yadav, Application of Generalized Polynomials of Several Variables and Multivariable H-function in One Dimensional Advective Diffusion Problem, Bulletin of Pure and Applied Mathematics 4 (2) (2010) 353–362.
  • H. Kumar, M. A. Pathan, S. K. Rai, Obtaining Voigt Functions via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem, Kragujevac Journal of Mathematics 46 (5) (2022) 759–772.
  • H. Kumar, H. Srivastava, S. K. Rai, On a Bi Dimensional Basis Involving Special Functions for Partial in Space and the Time Fractional Wave Mechanical Problems and Approximation, Jnanabha 47 (2) (2017) 291–300.