The Transmittal-Characteristic Function of Three-Interval Periodic Sturm-Liouville Problem with Transmission Conditions

In this paper, we study the periodic Sturm-Liouville problem, defined on three non-intersecting intervals with four supplementary conditions which are imposed at two internal points of interaction, the so-called transmission conditions. We first prove that the eigenvalues are real and the system of eigenfunctions is an orthogonal system. Secondly, some auxiliary initial-value problems are defined and transmittal-characteristic function is constructed in terms of solutions of these initial-value problems. Finally, we establish that the eigenvalues of the considered problem are the zeros of the transmittal-characteristic function.

___

  • İ. Çelik, G. Gökmen, Approximate Solution of Periodic Sturm Liouville Problems with Chebyshev Collocation Method, Applied Mathematics and Computation 170(1) (2005) 285-295.
  • X. Haoa, L. Liu, Y. Wu, Existence and Multiplicity Results for Nonlinear Periodic Boundary Value Problems, Nonlinear Analysis: Theory, Methods and Applications 72(9-10) (2010) 3635-3642.
  • J. Li, J. J. Nieto, J. Shen, Impulsive Periodic Boundary Value Problems of First-Order Differential Equations, Journal of Mathematical Analysis and Applications 325(1) (2007) 226-236.
  • J. Qiu, Positive Solutions for a Nonlinear Periodic Boundary-Value Problem with a Parameter, Electronic Journal of Differential Equations 2012(133) (2012) 1-10.
  • G. V. Berghe, M. V. Daele, H. D. Meyer, A Modified Difference Scheme for Periodic and Semiperiodic Sturm-Liouville Problems, Applied Numerical Mathematics 18(1-3) (1995) 69-78.
  • P. A. Binding, P. B. Rynne, Half-Eigenvalues of Periodic Sturm-Liouville Problems, Journal of Differential Equations 206(2) (2004) 280-305.
  • P. Binding, H. Volkmer, A rüfer Angle Approach to the Periodic Sturm-Liouville Problem, The American Mathematical Monthly 119(6) (2012) 477-484.
  • A. Boumenir, Eigenvalues of Periodic Sturm-Liouville Problems by the Shannon-Whittaker Sampling Theorem, Mathematics of Computation of the American Mathematical Society 68(227) (1999) 1057-1066.
  • F. Geng, Y. Xu, D. Zhu, Periodic Boundary Value Problems for First-Order Impulsive Dynamic Equations on Time Scales, Nonlinear Analysis: Theory, Methods and Applications 69(11) (2008) 4074-4087.
  • K. V. Khmelnytskaya, H. Rosu, C. A. Gonzalez, Periodic Sturm-Liouville Problems Related to Two Riccati Equations of Constant Coefficients, Annals of Physics 325(3) (2010) 596-606.
  • V. A. Sadovnichii, Y. T. Sultanaev, A. M. Akhtyamov, {\em Inverse Sturm-Liouville Problem with Generalized Periodic Boundary Conditions, Differential Equations 45(4) (2009) 526-538.
  • A. A. Shkalikov, O. A. Veliev, On the Riesz Basis Property of the Eigen-and Associated Functions of Periodic and Antiperiodic Sturm-Liouville Problems, Mathematical Notes 85(5-6) (2009) 647-660.
  • S. Somali, V. Oger, Improvement of Eigenvalues of Sturm-Liouville Problem with t-Periodic Boundary Conditions, Journal of Computational and Applied Mathematics 180(2) (2005) 433-441.
  • Y. Yuan, J. Sun, A. Zettl, Eigenvalues of Periodic Sturm Liouville Problems, Linear Algebra and Its Applications 517 (2017) 148-166.
  • Y. Wang, J. Li, Z. Cai. Positive Solutions of Periodic Boundary Value Problems for the Second-Order Differential Equation with a Parameter, Boundary Value Problems Article Number 49 2017(1) (2017) 1-11.
  • Y. Zhao, H. Chen, B. Qin, Periodic Boundary Value Problems for Second-Order Functional Differential Equations with Impulse, Advances in Difference Equations Article Number 134 2014(1) (2014) 1-12.
  • I. Akbarfam, A. Jodayree, Resolvent Operator and Self-Adjointness of Sturm-Liouville Operators with a Finite Number of Transmission Conditions, Mediterranean Journal Of Mathematics 11(2) (2014) 447-462.
  • B. P. Allahverdiev, E. Bairamov, E. Ugurlu, Eigenparameter Dependent Sturm-Liouville Problems in Boundary Conditions with Transmission Conditions, Journal of Mathematical Analysis and Applications 401(1) (2013) 388-396.
  • B. P. Allahverdiev, H. Tuna, On the Resolvent of Singular Sturm-Liouville Operators with Transmission Conditions, Mathematical Methods in The Applied Sciences 43(7) (2020) 388-396.
  • J. Ao, J. Sun, Eigenvalues of a Class of Fourth-Order Boundary Value Problems with Transmission Conditions Using Matrix Theory, Linear and Multilinear Algebra 69(9) (2021) 1610-1624.
  • K. Aydemir, H. Olğar, O. Sh. Mukhtarov, Differential Operator Equations with Interface Conditions in Modified Direct Sum Spaces, Filomat 32(3) (2018) 921-931.
  • E. Bairamov, E. Uğurlu, On the Characteristic Values of the Real Component of a Dissipative Boundary Value Transmission Problem, Applied Mathematics and Computation 218(19) (2012) 9657-9663.
  • H. Olğar, O. Sh. Mukhtarov, Weak Eigenfunctions Of Two-Interval Sturm-Liouville Problems Together With Interaction Conditions, Journal of Mathematical Physics 58(042201) (2017) DOI: 10.1063/1.4979615.
  • H. Olğar, F. Muhtarov, The Basis Property of the System of Weak Eigenfunctions of a Discontinuous Sturm-Liouville Problem, Mediterranean Journal of Mathematics Article Number 114 14(3) (2017) 1-13.
  • O. Sh. Mukhtarov, K. Aydemir, Discontinuous Sturm-Liouville Problems Involving an Abstract Linear Operator, Journal of Applied Analysis and Computation 10(4) (2020) 1545-1560.
  • O. Sh. Mukhtarov, H. Olğar, K. Aydemir, I. Sh. Jabbarov, Operator-Pencil Realization of One Sturm-Liouville Problem with Transmission Conditions, Applied and Computational Mathematics 17(2) (2018) 284-294.
  • O. Sh. Mukhtarov, M. Yücel, K. Aydemir, A New Generalization of the Differential Transform Method for Solving Boundary Value Problems, Journal of New Results in Science 10(2) (2021) 49-58.
  • E. Şen, Sturm-Liouville Problems With Retarded Argument and A Finite Number of Transmission Conditions, Electronic Journal Of Differential Equations 2017(310) (2017) 1-8.
  • E. C. Titchmarsh, Eigenfunctions Expansion Associated with Second Order Differential Equations I, Second edn. Oxford University Press, London, 1962.