Kuantum Bilgisayarlarının Gerçekleştirildiği Sistemler

Bilgisayar tasarımı kavramının kuantum mekaniği yasalarını kullanarak tanıtılmasından sonra gerçekleşebilecek sistemleri araştırdık. Bu çalışmada kuantum bilgisayarlarda kuantum elektrodinamik, fullerenler, moleküler mıknatıslar, NMR ve EPR spektroskopisi, biradikaller, ışık polarizasyonu ve süper iletken cihazlar anlatılmıştır. Kuantum elektrodinamiği, fullerenler, moleküler mıknatıslar, NMR ve EPR spektroskopisi, Işık polarizasyonu ve süper iletkenlerden bahsedildi. Bu sistemler ayrı olarak gösterilmeye çalışılmıştır. Sonuç olarak, kuantum bilgisayarın gerçekleştirilebildiği sistemlerdeki fullerenler kararlı olma, fullerenlere atom yerleştirilmesi gibi özelliklerden dolayı kuantum hesaplamanın, özellikle manyetik rezonans spektroskopisi ile gerçekleştirilebildiği güçlü sistemlerden biridir. Bir diğer sistem, süperiletkenler olup, yüksek sıcaklıkta bulunduğunda gerçekleşebilir. Işık polarizasyonu, kutuplaştınlabilir ışığın kuantum hesaplamayla işlenebileceği güçlü bir sistem olabileceği düşünülmektedir. EPR, NMR spektroskopisi, kuantum elektrodinamiği, moleküler mıknatıslar ve kuantum hesaplamanın gerçekleştirilebileceği biradikaller fiziksel yapılar olarak umut vericidir.

Some Systems of Quantum Computing

We have searched for systems that can be realized after the introduction of the concept of computer design using the laws of quantum mechanics. In this work, quantum electrodynamics, fullerenes, molecular magnets, NMR and EPR spectroscopy, biradikals, light polarization and superconducting devices have been mentioned in quantum computers. Quantum electrodynamics, fullerenes, molecular magnets, NMR and EPR spectroscopy, Light polarization and superconductors are mentioned in quantum computers. These systems have been tried to be shown separately. As a result, the fullerenes from the systems in which the quantum computer can be realized are mainly in the systems in which quantum computation can be carried out, in particular with magnetic resonance spectroscopy, for a number of reasons such as being stable, being able to place atoms in the fullerenes. Another system is superconductors, which can be realized if the temperature is high. It is thought that light polarization can be a powerful system in which the polarizable light can be processed by quantum computing. EPR, NMR spectroscopy, quantum electrodynamics, molecular magnets and biradikals, where quantum computation can be performed, are promising as physical structures.

___

  • [1] Feynman R(1985). Quantum mechanical computers. Foundation of Physics, vol. 16(6):507- 531.
  • [2] Shor PW(1994). Algorithms for quantum computation: discrete logarithms and factoring, Proceeding of the 35th Annual Symposium on Foundations of Computer Science, pp.124-134, Washington, USA.
  • [3] Nakahara M, Ohmi T (2008).Quantum Computing From Linear Algebra To Physical Realizations, Broken Sound Parkway Taylor &Francis Books CRC Press, New York, USA.
  • [4] Nielsen MA, Chuang IL (2010). Quantum Computation and Quantum Information (10th Anniversary ed), Cambridge University Press, Cambridge, UK.
  • [5] Feynman R(1985). The Strange Theory of Light and Matter, Princeton University Press, New Jersey, USA.
  • [6] Yadav BC, Kumar R(2008). Structure properties and applications of fullerenes. International Journal of Nanotechnology and Applications, 2(1):15–24.
  • [7] Tapramaz R(1991). kükürt–oksi, metil sülfinil ve arsenat radikallerinin elektron spin rezonans spektroskopisi ile incelenmesi. PhD thesis, Ondokuz Mayıs University, Samsun, Turkey.
  • [8] Oliveira IS, Bonagamba TJ, Sarthaur RS, Freitas JCC, Azevedo ER(2007). NMR Quantum Information Processin (1 st ed), Elsevier Publishing, Oxford, UK.
  • [9] Hitchens TK, Rule GS (2006). Fundamentals of Protein NMR Spectroscopy, Springer, Dordecht, Netherlands.