Modeling Study of Solid Oxide Fuel Cell Operating on Reformed NATO F-76 Diesel Fuel

Anahtar Kelimeler:

-

Modeling Study of Solid Oxide Fuel Cell Operating on Reformed NATO F-76 Diesel Fuel

Fuel cells provide great potential for electric power generation on-board ships. Ships use marine diesel fuel for marine main and auxiliary engines . In this work, this paper presents the performance analysis of a planar solidoxide fuel cell (SOFC) under reformed diesel fuel. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal operational regimes. In the model, electrochemical kinetics, gas dynamics and species are coupled. The model predicts polarization curve, velocity and species concentration and current distribution in the cell depending on fuel cell temperature and electrodes/ electrolyte materials used in the components YAKIT DÖNÜŞTÜRÜCÜDE DÖNÜŞTÜRÜLMÜŞ DİZEL YAKIT İLE ÇALIŞAN KATI OKSİTLİ YAKIT PİLİNİN MODELLEME ÇALIŞMASI Özetçe Yakıt pilleri, gemilerde elektrik gücü üretimi için büyük bir potansiyel sağlamaktadır. Gemiler, ana ve yardımcı makinaları için deniz tipi dizel yakıt kullanmaktadır. Bu çalışmada, yakıt dönüştürücüde dönüştürülmüş dizel yakıtı ile çalışan düzlemsel tip katı oksitli yakıt pilinin performans analizi sunulnuştur. Detaylı bir katı oksitli yakıt pili modeli, çeşitli işletme parametrelerinin hücre performansı üzerindeki etkilerini çalışmak için kullanılmıştır. İzotermal çalışma rejimleri için verim ve güç yoğunluğunda önemli farklar gözlemlenmiştir. Modelde elektrokimyasal kinetikler, gaz dinamiği ve maddeler birleştirilmiştir. Model, yakıt pili sıcaklığına ve bileşenlerde kullanılan elektrod/elektrolit malzemelerine bağlı olarak polarizasyon eğrisini, hızı, madde konsantrasyonlarını ve akım dağılımını tahmin etmektedir

___

  • U.S. Department of Defense, 2006, MIL-DTL-16884L, Detail Specification Fuel Naval Distilate
  • R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, M.A. Douglas, Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode, Journal of Power Sources 122 (2003) 9–18
  • K.J. Daun, S.B. Beale, F. Liu, G.J. Smallwood, Radiation heat transfer in planar SOFC electrolytes, Journal of Power Sources 157 (2006) 302–310
  • Andreassi L., Toro C., Ubertini S., 2007. Modeling carbon monoxide direct oxidation in solid oxide fuel cells. In Proceedings ASME European Fuel Cell Technology and Applications Conference, EFC2007-39057.
  • C.F. Curtiss and R.B. Bird, Ind. Eng. Chem. Res., vol. 38, p. 2515, 1999.
  • Perry RH. et al.,1997, Perry’s chemical engineers’ handbook. seventh ed.,New York: McGraw- Hill
  • Matthew M. Mench, Fuel Cell Engines, 2008 by John Wiley & Sons, Inc.
  • Dong Hyup Jeon, A comprehensive CFD model of anode-supported solid oxide fuel cells, Electrochimica Acta 54 (2009) 2727–2736
  • Ezgi, Cüneyt, Design And Analysis Of NATO F-76 Diesel Fueled Solid Oxide Fuel Cell System Onboard Surface War Shıp Ph.D. Thesis, Ege University,Turkey (2009).
  • Bossel, U., 1992, “Facts and Figures, Final Report on SOFC Data”, Swiss Federal Office of Energy, Operating Task II, Berne, Switzerland, April,
  • Yakabe H, Sakurai T.,2004, 3D simulation on the current path in planar SOFCs Solid State Ionics, 174:295–302.
  • Shi Yixiang, Cai Ningsheng, Li Chen., 2007, Numerical modelling of an anode-supported SOFC button cell considering anodic surface diffusion. J Power Sources 164:639–48.
  • Hocine Ben Moussa, Bariza Zitouni, Kafia Oulmib, Bouziane Mahmahc, Maiouf Belhamelc, Philippe Mandind,2009, Hydrogen consumption and power density in a co-flow planar SOFC, International journal of hydrogen energy.
  • R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Second edition, John Wiley & Sons, 2005.