CAM VE Si/SiO ALTTAŞ ÜZERİNE KAPLANAN NbN İNCE FİLMLERİN KAPLAMA KOŞULLARININ ARAŞTIRILMASI

NbN ince filmler elektronik cihazlar için çok kullanışlı süper iletken malzemelerdir. Püskürtme biriktirme tekniğini kullanması teknoloji uygulamaları için cam veya SiO üzerinde NbN ince filmlerin üretilmesi için ucuz bir alternatiftir. . Bu çalışmada, NbN ince filmler, reaktif magnetron püskürtme yöntemi ile cam, Si ve SiO alt tabakaları üzerine kaplanmıştır. Saf Nb metali, Argon ve azot gazlarının farklı karşım oranlarında NbN ince filmlerinin üretimi için kullanılmıştır. Çeşitli alttaş sıcaklıkları, püskürtme gücü ve Argon / Azot gazı oranının süperiletken geçiş sıcaklığı (Tc)  üzerine etkileri araştırılmıştır. Alttaş sıcaklığının veya püskürtme gücünün arttırılmasının Tc'yi de arttığı görülmüştür. Bunun sonunda optimum sıcaklık değerleri, direnç-sıcaklık (R-T) eğrileri ve Artık Direnç Oranı (RRR) hesaplaması yardımı ile bulunmuştur. Kaplama sırasındaki alttaş sıcaklığının ve azot gazı akış değerlerinin tercih edilen yönlendirmeyi güçlü bir şekilde etkilediği gözlenirken, ince filmlerin kritik sıcaklığı orijinal vakumun kalitesinden etkilenmektedir. Ayrıca Tc üretilen NbN filmlerinin kalitesi kaplama işlemi süresindeki Azot ve Argon basınçlarına da oldukça bağımlıdır.

INVESTIGATION OF THE SPUTTERING CONDITIONS ON THE DEPOSITION OF THE NbN THIN FILMS ONTO GLASS AND Si/SiO SUBSTRATES

NbN thin films are very useful superconducting materials for the electronic devices. Using sputter deposition technique is a cheap alternative to produce of NbN thin films on glass or SiO for the technology applications. The NbN films was coated on glass and SiO/Si substrates by DC magnetron sputtering tehcnique. Pure Nb target was used the production of NbN thin films in different compositions of Argon and nitrogen gases. The effects of different substrate temperatures, sputtering power and, various ratios of Nitrogen/Argon gases were investigated on Superconducting Critical Temperature (Tc). It is seen that increasing the substrate temperature or sputtering power resulted in increased on the Tc. Thereby optimum condition values are deduced by the Residual Resistance Ratio (RRR) calculation and resistance-temperature (R-T) curves. It is observed that the substrate temperature and the flux of nitrogen gas effect (111) preferential orientation during the deposition, whereas the critical temperature of the thin films is affected by the of deposition chamber vacuum. Tc is also highly dependent on the Nitrogen and Argon pressures on sputtering deposited NbN films.

___

  • [1] M.S. Wong, W.D. Sproul, X. Chu, S.A. Barnett, (1993).”Reactive magnetron sputter deposition of niobium nitride films” J. Vac. Sci. Technol. Vol A 11, pp. 1528-1533.
  • [2] S. K. Kim, B. C. Cha, and J. S. Yoo, (2004) “Deposition of NbN thin films by DC magnetron sputtering process,” Surface and Coatings Technology, vol. 177-178, pp. 434–440.
  • [3] J. J. Olaya, S. E. Rodil, and S. Muhl, (2008) .“Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films, vol. 516, no. 23, pp. 8319–8326.
  • [4] Kulwant Singh, A. C. Bidaye, and A. K. Suri C. S. Sandu, (2011). “Magnetron Sputtered NbN Films with Nb Interlayer on Mild Steel” International Journal of Corrosion, Vol. 2011, pp. 1-11.
  • [5] Hoshi Y., Terada N., Naoe M., Yamanaka S., (1984). “Fabrication of High Tc NbN Films by Ion Beam Deposition Technique”. In: Clark A.F., Reed R.P. (eds) Advances in Cryogenic Engineering Materials. Advances in Cryogenic Engineering, vol 30. Springer, Boston, MA,
  • [6] M Kidszun, R Hühne, B Holzapfel and L Schultz, (2011). “Ion-beam-assisted deposition of textured NbN thin films” Supercond. Sci. Technol. 23, pp. 025010-025018.
  • [7] G. Cappuccio, U. Gambardella, A. Morone, S. Orlando, and O. P. Parisi, (1997). “Pulsed laser ablation of NbN/MgO/NbN multilayers,” Applied Surface Science, vol. 109, pp. 399–402.
  • [8] Y. Ufuktepe, A.H. Farha, S.I. Kimura, T. Hajiri, K. Imura, M.A. Mamun, F. Karadag, A.A. Elmustafa, H.E. Elsayed-Ali, (2013). “Superconducting niobium nitride thin films by reactive pulsed laser deposition”, Thin Solid Films, Vol. 545, Pp. 601-607.
  • [9] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés, F. Lévy, (2004). “Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films”, Surf. Coat. Technol., 180-181, pp.178-183.
  • [10] Z. Wang, A. Kawakami, Y. Uzawa, B. Komiyama, (1996). “Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature”, J. Appl. Phys., 79, pp.7837-7842
  • [11] S. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, P. Raychaudhuri, (2008). “Superconducting properties and Hall effect of epitaxial NbN thin films”, Phys. Rev. B., 77, pp. 214503.
  • [12] L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, B. G. Wang, (2011). “Suppression of superconductivity in epitaxial NbN ultrathin films”. Journal of Applied Physics, 109(3), pp. 033908.
  • [13] S. Ezaki, K. Makise, B. Shinozaki, T. Odo, T. Asano, H. Terai, Z. Wang, (2012). “Localization and interaction effects in ultrathin epitaxial NbN superconducting films”. Journal of Physics. Condensed Matter : An Institute of Physics Journal, 24(47), pp. 475702.
  • [14] C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjin´es, and F. L´evy, (2006). “Morphological, structural and mechanicalproperties of NbN thin films deposited by reactive magnetronsputtering,” Surface and Coatings Technology, vol. 200, no. 22- 23, pp. 6544–6548.
  • [15] R. Sanjinés, M. Benkahoul, C.S. Sandu, P.E. Schmid, F. Lévy, (2006). “Electronic states and physical properties of hexagonal β-Nb2N and δ′-NbN nitrides”, Thin Solid Films, vol 494, 1-2, pp. 190-195.