AKIŞ DÜZENLEYİCİLERİN BİR JENERİK DENİZALTI YELKENİ ETRAFINDAKİ AKIŞA ETKİSİNİN İNCELENMESİ

Bu çalışmada, üzerine tandem konfigürasyonda iki akış düzenleyicinin konumlandırıldığı jenerik DARPA Suboff AFF8 denizaltısının yelkeni etrafında gelişen viskoz akım alanı hesaplamalı akışkanlar dinamiği ile incelenmiştir. Türk Donanması’nın mevcut denizaltı sınıflarından bazılarının ana yelkenlerinin iyileştirilmesi için periskopların oluşturduğu karmaşık akış yapısından kaynaklanan direnç ve girdaplılık artışlarını önlemek ve daha düzgün bir akış topolojisi sağlamak maksadıyla, önceden konumlandırılmış bu takıntılar akış düzenleyiciler ile çevrelenerek efektif bir çözüm hedeflenmiştir. Akışı düzenlemek için aynı kiriş ve açıklık boyuna sahip üç farklı NACA profili belirlenmiş ve bu NACA profili geometrilerinin hidrodinamik dirence ve yelken etrafındaki akım alanı karakteristiğine etkisi gösterilmiştir. Akış düzenleyiciler için seçilen farklı profillerin, akış düzenleyicilerin etrafındaki akım alanı için hesaplanan direnç, hız, basınç ve girdaplılık karakteristiklerini önemli ölçüde etkilediği görülürken ana yelkenin yan bölgelerindeki akım yapısını etkilemediği gözlemlenmiştir. NACA 6 ve NACA 16 serilerinden seçilen profiller, klasik NACA 4 serisi eşdeğerlerinden daha iyi bir hidrodinamik performans vermektedir.

INVESTIGATION OF THE EFFECT OF THE FLOW REGULATORS ON THE FLOW AROUND A GENERIC SUBMARINE SAIL

In this study, the viscous flow field around the mainsail of the DARPA Suboff AFF8 generic submarine fitted with two flow regulators in tandem configuration was investigated by means of computational fluid dynamics. An effective solution for the improvement of the mainsails of some of the current submarine classes of the Turkish Navy was aimed by covering the prepositioned periscopes by the flow regulators to avoid drag and vorticity increases due to the complex flow structure generated by these appendages and to provide a smoother flow topology. Three different NACA profiles with the same chord and span lengths were specified for regulating the flow. The effect of the NACA profile geometries on the hydrodynamic resistance and the flow field characteristics around the sail was demonstrated. It was shown that different profiles selected for the flow regulators considerably affect the computed resistance, velocity, pressure and vorticity characteristics of the flow field around the flow regulators. However, the flow structure at the side zones of the mainsail was not affected by the flow regulators. The profiles selected from NACA 6-digit and NACA 16-digit series give better hydrodynamic performance than their classical NACA 4-digit equivalent.

___

  • Abbott, I. H., and von Doenhoff, A. E. (1959). Theory of Wing Sections: Including a Summary of Airfoil Data, Dover Publications Inc., New York, USA.
  • ANSYS Inc. (2013). ANSYS Fluent User’s Guide, Canonsburg, USA.
  • Baker, C. (2004). “Estimating Drag Forces on Submarine Hulls”. Contract Report, Defence Research and Development Canada - Atlantic, Canada.
  • Budak, B., and Beji, S. (2016). “Computational Resistance Analyses of a Generic Submarine Hull Form and Its Geometric Variants”. Journal of Ocean Technology, Vol. 11, No. 2, 76-86.
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., and Raad, P. E. (2008). “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications”. Journal of Fluids Engineering, Vol. 130, Issue 7. doi:10.1115/1.2960953.
  • Chao, L. M., Zhang, D., and Pan, G. (2017). “Roles of Size and Kinematics in Drag Reduction for Two Tandem Flexible Foils”. Modern Physics Letters B, Vol. 31, No. 33. doi:10.1142/S0217984917503110.
  • Chase, N. (2012). Simulations of DARPA Suboff Submarine Including Self-propulsion with the E1619 Propeller. [Master’s Thesis]. The University of Iowa Graduate College, Iowa, USA.
  • Groves, N. C., Huang, T. T., and Chang, M. S. (1989). “Geometric Characteristics of DARPA Suboff Models”. David Taylor Research Center, Bethesda, USA.
  • Kale, F. M. (2020). Numerical Investigation of Flow around a Submarine by Openfoam and ANSYS Fluent. [Master’s Thesis]. Istanbul Technical University Institute of Science, Istanbul, Turkey.
  • Kinaci, O. K. (2015). “A Numerical Parametric Study on Hydrofoil Interaction in Tandem”. International Journal of Naval Architecture and Ocean Engineering, Vol. 7, Issue 1, 25-40. doi:10.1515/ijnaoe-2015-0003.
  • Kukner, A., Duran, A., and Cinar, T. (2016). “Investigation of Flow Distribution around a Submarine”. Journal of Naval Science and Engineering, Vol. 12, Issue 2, 1-26.
  • Lungu, A. (2019). “DES-based Computation of the Flow around the DARPA Suboff”. IOP Conference Series: Materials Science and Engineering, 591. doi:10.1088/1757-899X/591/1/012053.
  • Maraam, M. A., Ghafari, H. R., Ghassemi, H., and Ghiasi, M. (2021). “Numerical Study on the Tandem Submerged Hydrofoils Using RANS Solver.” Mathematical Problems in Engineering, Vol. 2021. doi:10.1155/2021/8364980.
  • Menter, F. R. (1994). “Two-equation Eddy-viscosity Turbulence Models for Engineering Applications”. AIAA Journal, Vol. 32, No. 8, 1598-1605. doi:10.2514/3.12149.
  • Pletcher, R. H., Tannehill, J. C., and Anderson, D. A. (2011). Computational Fluid Mechanics and Heat Transfer, 3rd Edition. CRC Press, Florida, USA.
  • Rhie, C. M., and Chow, W. L. (1983). “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Seperation”. AIAA Journal, Vol. 21, No. 11, 1525-1532. doi:10.2514/3.8284.
  • Shang, Y., and Horrillo, J. J. (2021). “Numerical Simulation and Hydrodynamic Performance Predicting of 2 Two-dimensional Hydrofoils in Tandem Configuration”. Journal of Marine Science and Engineering, Vol. 9, Issue 5, 462-477. doi:10.3390/jmse9050462.
  • Takahashi, K., and Sahoo, P. K. (2019). “Fundamental CFD Study on the Hydrodynamic Performance of the DARPA Suboff Submarine”. Proceedings of the 38th International Conference on Ocean, Offshore & Arctic Engineering, Volume 2: CFD and FSI, Glasgow, UK. doi: 10.1115/OMAE2019-96190.
  • Tennekes, H., and Lumley, J. L. (1972). A First Course in Turbulence, MIT Press, Cambridge, UK.
  • Wilcox, D. C. (2006). Turbulence Modeling for CFD, 3rd Edition, DCW Industries, California, USA.
  • Wilson-Haffenden, S., Renilson, M., Ranmuthugala, D., and Dawson, E. (2010). “An Investigation into the Wave Making Resistance of a Submarine Travelling below the Free Surface”. International Maritime Conference 2010: Maritime Industry - Challenges, Opportunities and Imperatives, Sydney, Australia.