Voltage-Gated Sodium Channels Dysfunction in Depression: The Hypothesis

Voltaj bağımlı sodyum kanalları nöronlarda sinyal iletimi, kas kontraksiyonu, hormon salınımı, kardiyak pacemaker ve nörotransmitter salınımı gibi birçok fizyolojik süreçte aksiyon potansiyelinin oluşumunda rol oynar. Trisiklik antidepresanlar ve duloksetin gibi bazı antidepresanlar voltaj bağımlı sodyum kanallarını etkileyebilir. Kanalopatiler olarak da bilinen sodyum kanalı gen mutasyonları epilepsi, kronik ağrı, migren ve kardiyak aritmiler gibi bazı kalıtsal hastalıklara yol açabilir. Bu hastalıkların birçoğu depresyona benzer şekilde epizodik, ataklarla seyreden, ataklar arasında normal veya normale yakın bir işlevselliğe dönen, psikolojik stres faktörleriyle artış gösteren özelliklere sahiptir. Sodyum kanal gen mutasyonlarının ayrıca intihar girişimlerine yatkınlık, uyku bozukluğu, hipotalamo-hipofizer adrenal eksen disfonksiyonunu gösteren kortikosteroidlerin salınımının diurnal ritminde bozulma ile ilişkili olduğu gösterilmiştir. Voltaj bağımlı sodyum kanallarının nöromodulasyonu depresyonun patofizyolojine de katkıda bulunan cAMP-bağımlı protein kinaz A ve protein kinaz C aracılı nöroplastisite ve hücresel yenilenmede (resilience) önemli rol oynar. Antidepresan ilaçlar ve somatik tedaviler (örneğin; elektrokonvülsif terapi ve transkraniyal manyetik stimulasyon) hücresel direnci arttıran CREB (cAMP response element binding protein) ve BDNF (brain derived neurotrophic factor) gibi birçok nörotropinleri düzenler. Bu bulgular depresyonda voltaja bağımlı sodyum kanallarının disfonksiyonu hipotezini desteklemektedir.

Depresyonda voltaja bağımlı sodyum kanallarının disfonksiyonu: Bir hipotez

Voltage-gated sodium (Na+) channels (VGSCs) are responsible for action potential initiation and propagation in most electrically excitable cells which are implicated in a wide range physiological functions including neuronal signalling, muscle contraction, endocrine secretion, cardiac pacemaking, as well as neurotransmitter releases. VGSCs are targets for certain antidepressant drugs such as tricyclic antidepressant and duloxetine. Sodium channel gene mutations are associated with a variety of inherited diseases known as channelopathies such as epilepsy, chronic pain, migraine and cardiac arrhythmia. A common clinical features of many channelopathies are the paroxysmal symptoms, discrete attacks, usually precipitated by a physiologic stress, and most people return to normal or near normal function between attacks similar to depression. It has been demonstrated that sodium channel gene mutations are also associated with increased susceptibility to suicidal attempts, sleep disturbance, dysregulation of diurnal rhythm in corticosterone secretion indicating hypothalamicpituitary-adrenal axis dysfunction. Neuromodulation of voltage-gated sodium channels plays an important role in regulating neuroplasticity and cellular resilience mediated by cAMP-dependent PKA and PKC that could contribute to pathophysiology of depression. Antidepressant drugs and somatic therapies (e.g., electroconvulsive therapy, and transcranial magnetic stimulation) regulate a number of neurotrophins such as cAMP response element binding protein and brain derived neurotrophic factor which have the potential to increase neuroplasticity and cellular resilience. These findings support the hypothesis that sodium channel dysfunction may be involved in the etiology of depression.

___

  • 1. Prica C, Hascoet M, Bourin M. Antidepressant-like effect of lamotrigine is reversed by veratrine: a possible role of sodium channels in bipolar depression Behav Brain Res. 2008;191:49-54.
  • 2. Krafte DS, Bannon AW. Sodium channels and nociception: recent concepts and therapeutic opportunities. Curr Opin Pharmacol. 2008;8:50-6.
  • 3. Felix R. Channelopathies: nion channel defects linket to heritable clinical disorders. J Med Genet. 2000;37:729-40.
  • 4. Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7:3-12.
  • 5. Ogata N, Ohishi Y. Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn J Pharmacol. 2002;88:365-77.
  • 6. Dworakowska B, Do?owy K. Ion channels-related diseases. Acta Biochim Pol. 2000;47:685-703.
  • 7. Pietrobon D. Biological science of headache channels. Handb Clin Neurol. 2010;97:73-83.
  • 8. Momin A, Wood JN. Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol. 2008;18:383-8.
  • 9. O'Malley HA, Isom LL. Sodium channel ? subunits: emerging in channelopathies. Annu Rev Physiol. 2015;77:481-504.
  • 10. Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR. The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain. 2006;7:1- 29.
  • 11. Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, Wood JN. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain. 2006;19;2:33.
  • 12. Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R. cAMP signaling pathway in depressed patients with psychotic features. Mol psychiatry. 2002;7:208-12.
  • 13. Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressant: molecular and cellular aspects. Cell Mol Life Sci. 2009;66:2985-3008.
  • 14. Villanueva R. Neurobiology of major depressive disorder. Neural Plast. 2013;8:732-78.
  • 15. Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry. 1999;4:317-27.
  • 16. Kullmann DM. Neurological channelopathies. Annu Rev Neurosci. 2010;33:151-72.
  • 17. Wang SY, Calderon J, Kuo Wang G. Block of neuronal Na+ channel by antidepressant duloxetine in a state-dependent manner. Anesthesiology. 2010;113:655-65.
  • 18. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd. Inhibition of neuronal Na+ channels by antidepressant drugs. J Pharmacol Exp Ther. 1998;284:208-14.
  • 19. Kerr GW, McGuffie AC, Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J. 2001;18:236-41.
  • 20. Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain. 2007;8:315-24.
  • 21. Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci. 2008;28:11768-77.
  • 22. C?t?lin B, Mitran S, Ciorbagiu M, Osiac E, B?lşeanu TA, Mogoant? L, Dinescu SN, Albu CV, Mirea CS, Vîlcea ID, Ianc?u M, Sfredel V. Microglial voltage-gated sodium channels modulate cellular response in Alzheimer's disease-a new perspectiveon an old problem. Rom J Morphol Embryol. 2015;56:21-5.
  • 23. Wang Y, Zhang J, Li X, Ji J, Yang F, Wan C, Feng G, Wan P, He L, He G. SCN8A as a novel candidate gene associated with bipolar disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1902-4.
  • 24. Papale LA, Paul KN, Sawyer NT, Manns JR, Tufik S, Escayg A. Dysfunction of the Scn8a voltage-gated sodium channel alters sleep architecture, reduces diurnal corticosterone levels, and enhances spatial memory. J Biol Chem. 2010;285:16553-61.
  • 25. Trudeau MM, Dalton JC, Day JW, Ranum LP, Meisler MH. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet. 2006;43:527-30.
  • 26. Wasserman D, Geijer T, Rozanov V, Wasserman J. Suicide attempt basic mechanisms in neural conduction: relationships to the SCN8A and VAMP4 genes. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:116-9.
  • 27. Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA. Neuromodulation of Na+ channel slow inactivation via cAMPdependent protein kinase and protein kinase C. Neuron. 2006;49:409-20.
  • 28. Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA. Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol Cell Neurosci. 2008;38:607-15.
  • 29. Cantrell AR, Scheuer T, Catterall WA. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons. J Neurosci. 1999;19:5301-10.
  • 30. Manji HK, Moore GJ, Rajkowska G, Chen G. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry. 2000;5:578- 93.
  • 31. Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry. 2000;48:740-54.
  • 32. Eitan R, Lerer B. Nonpharmacological, somatic treatments of depression: electroconvulsive therapy and novel brain stimulation modalities. Dialogues Clin Neurosci. 2006;8:241-58.
  • 33. Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. Med Devices (Auckl). 2012;5:53- 65.