Diagnostic value of nine nucleic acid amplification test systems for Mycobacterium tuberculosis complex

Amaç: Bu çalışmada, yayma pozitif balgam örneklerinde ve yayma negatif balgam örneklerinde Mycobacterium tuberculosis kompleks (MTBK)’nin hızlı tanısında dokuz ticari Nükleik Asit Amplifikasyon Test sistemi (NAAT)’nin tanı performansı değerlendirildi. Yöntemler: Çalışma sırasında kullanılan 60 yayma pozitif ve 55 yayma negatif balgam örneği mikroskopik olarak Erlich Zielh Neelsen (EZN) boyama yöntemi ve Löwenstein Jensen (LJ) besiyerinde kültür ile değerlendirildi. Löwenstein-Jensen kültür yöntemi altın standart olarak kabul edilerek dokuz NAAT yönteminin duyarlılık ve özgüllükleri hesaplandı.Bulgular: Löwenstein Jensen kültür sonuçları altın standart olarak alındığında; Yayma pozitif örneklerde (COBAS Amplicor MTB (Metot A), GenProbe MTD (Metot B), Cobas TaqMan MTB PCR (Metot C), iCycler iQ RT-PCR (Metot D), TaqMan PCR AB 5700 (Metot E), TaqMan PCR AB7700 (Metot F), LightCycler® 480 RT PCR (Metot G), Rotor Gene RT PCR (Metot H) ve AdvanSure TB/NTM RT PCR (Metot I) yöntemlerinin duyarlılık oranı sırası ile % 98,3, % 93,3, % 96,7, % 100, % 93,3, % 100, % 100, % 100 ve % 100 olarak bulundu. Bu oran yayma negatif örneklerde A, B, D, E, G ve I yöntemleri için % 53,8; C ve H yöntemi için % 38,5; F yöntemi için % 61,5 olarak bulundu. Dokuz NAAT metodu arasında istatistiksel olarak anlamlı fark bulunmadı. (p≥0.05). Yayma negatif balgam örneklerinde özgüllük bütün NAAT yöntemleri için % 100 olarak saptandı. Pozitif saptama oranı yayma negatif örneklerde A, B, D, E, G ve I yöntemleri için % 53,8, C ve H yöntemleri için % 38,5 ve F yöntemi için % 61,5 olarak bulundu. Bu oran yayma pozitif balgam örneklerinde D, F, G, H ve I yöntemleri için % 100; A yöntemi için % 98,3, C yöntemi için % 96,7, B ve E yöntemleri için % 93,3 olarak saptandı. Dokuz NAAT yöntemi arasında istatistiksel olarak anlamlı fark bulunmadı (p≥0.05). Sonuç: Dokuz NAAT yönteminin yayma pozitif örneklerde MTBK tanısında yararlı olabileceği, ancak yayma negatif örneklerde etkin olmadığı sonucuna varıldı

Objective: In this study, nine commercial Nucleic Acid Amplification Test Systems (NAATs) were evaluated for diagnostic performance of Mycobacterium tuberculosis complex (MTBC) from smear positive sputum species (SPss) and smear negative sputum specimens (SNss). Methods: Sixty SPss and 55 SNss were examined microscopically by Ehrlich Ziehl Neelsen (EZN) staining method, and also inoculated on Löwenstein Jensen (LJ) medium for culture. The sensitivity and specificity of nine NAATs were calculated according to LJ culture method accepted as gold standard. Results: When LJ culture results were taken as gold standard; the sensitivity rates of method COBAS Amplicor MTB (Method A), GenProbe MTD (Method B), Cobas TaqMan MTB PCR (Method C), iCycler iQ RT PCR (Method D), TaqMan PCR AB 5700 (Method E), TaqMan PCR AB7700 (Method F), LightCycler® 480 RT PCR (Method G), Rotor Gene RT PCR (Method H) and the AdvanSure TB/NTM RT PCR (Method I) for SPss were 98.3 %, 93.3 %, 96.7 %, 100 %, 93.3 %, 100 %, 100 %, 100 % and 100 %, respectively. The sensitivity was 53.84% for the methods A, B, D, E, G and I; 38.46% for the method C and H; 61.5% for the method F for the method I in SNss. There were no statistical significant differences between the nine NAATs (p≥0.05). The specificity was 100% for all nine NAATs in SNss. The positivity rates of methods were 53.8% for methods A, B, D, E, G, I; 38.5% for methods C and H, and 61.5% for method F in SNss. These rates were 100% for D, F, G, H and I; 98.3% for method A; 96.7% for method C; 93,3% for methods B and E in SPss. Statistical analysis showed that there was no statistically significant differences among the nine NAATs (p≥0.05).Conclusion: It is concluded that the nine NAATs might be useful for detecting MTBC from SPss, but not effective for SNss. J Microbiol Infect Dis 2015;5(3): 103-109Key words: Tuberculosis, polymerase chain reaction, nucleic acid amplification test, smear positive, smear negative, sputum

___

T.C.Sağlık Bakanlığı Verem Savaş Daire Başkanlığı, Türkiye’de

Verem Savaşı 2011 Raporu 5-9.

International Standards for Tuberculosis Care. 2013; Available

from: http://www.who.int/tb/publications/2006/istc_report.pdf, accessed on March 6.

World Health Organization Global tuberculosis control:

surveillance,planning, financing 2008;1-2.

Gebre N. Improved microscopical diagnosis of PTB in developing

countries. Trans Royal Soc Trap Med Hyg 1995;89:191-193.

World Health Organization.Tuberculosis Diagnostic Workshop:

Product Development guidelines 1997;21-24.

World Health Organization. Laboratory services in tuberculosis

control part III culture. Global Tuberculosis Programme 1998; 47-52.

Lambi EA. Medium selection and incubation for the isolation of

Mycobacteria, In: Isenberg HD, editor. Clinical microbiology

procedures handbook. Vol. 1. Washington, D.C. American Society for Microbiology. 1993; 3.6.1-3.6.8.

Metchock BG, Nolte FS, Wallace Jr RJ. Mycobacterium. In:Murray PR, Baron EJ, Pfaller MA et al, editors. Manual of clinical microbiology 7th ed. Washington, D.C. American Society for Microbiology 1999;399-437.

Diagnostic standards and classification of tuberculosis (1990)

American Thoracic Society Am Rev Respir Dis 1990;142:725–735.

Waard JH, Robledo J.Conventional diagnostic methods. In:

Palomino JC, Leão SC, Ritacco V (editors). Tuberculosis (Available from: www.TuberculosisTextbook.com). 2007;12:401-424.

Bogard M, Vincelette J, Antinozzi R, et al. Multicenter study of a commercial, automated polymerase chain reaction system for the rapid detection of Mycobacterium tuberculosis in respiratory specimens in routine clinical practice. Eur J Clin Microbiol Infect Dis 2001; 20:724–731.

Greco S, Girardi E, Navarra A, Saltini C. Current evidence on

diagnostic accuracy of commercially based nucleic acid amplification

tests for the diagnosis of pulmonary tuberculosis.Thorax 2006; 61:783–790.

Balasingham SV, Davidsen TI, Szpinda SA, Tonjum T. Molecular

diagnostics in tuberculosis: basis and implications for therapy. Mol Diagn Ther 2009; 13:137–151.

Laraque F, Griggs A, Slopen M, Munsiff SS. Performance of nucleic acid amplification tests for diagnosis of tuberculosis

in a large urban setting. Clin Infect Dis 2009; 49:46–54.

Ling DI, Flores LL, Riley LW, Pai M. Commercial nucleic-acid

amplification tests for diagnosis of pulmonary tuberculosis in

respiratory specimens: meta-analysis and meta-regressionPLoS One 2008; 3:e1536.

Noordhoek GT, Mulder S, Wallace P, van Loon AM. Multicentre

quality control study for detection of Mycobacterium tuberculosis

in clinical samples by nucleic amplification methods.Clin Microbiol Infect 2004;10:295-301.

World Health Organization.Tuberculosis Diagnostic Technology

Landscape 2012;19-23.

Centers for Disease Control and Prevention (CDC). Update:

nucleic acid amplification tests for tuberculosis. MMWR Morb Mortal Wkly Rep 2000; 49:593–594.

World Health Organization. New technologies for tuberculosis

control: a framework for their adoption, introduction and implementation; 2007.

Centers for Disease Control and Prevention (CDC). Updated

guidelines for the use of nucleic acid amplification tests in the

diagnosis of tuberculosis. MMWR 2009;58:7-10.

.Reischl U, Lehn N, Wolf H, Naumann L. Clinical evaluation

of the automated COBAS AMPLICOR MTB assay for testing

respiratory and non-respiratory specimens. J Clin Microbiol1998;

:2853-60.

Chang HE, Heo SR, Yoo KC, et al. Detection of Mycobacterium

tuberculosis complex using real-time polymerase chain reaction. Korean J Lab Med 2008; 28:103–108.

Ortu S, Molicotti P, Sechi LA, et al. Rapid detection and identification of Mycobacterium tuberculosis by Real Time PCR

and Bactec 960 MIGT. New Microbiol 2006;29: 75-80.

Jung CL, Kim MK, Seo DC, Lee MA. Clinical usefulness of

real-time PCR and amplicor MTB PCR assays for diagnosis of tuberculosis. Korean J Clin Microbiol. 2008; 11:29–33.

Piersimoni C, Scarparo C. Relevance of commercial amplification

methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 2003;41:5355-5365.

Dinnes, J., et al.A systematic review of rapid diagnostic tests

for the detection of tuberculosis infection. Health Technol Assess

;11:119–196.

Flores LL, Pai M, M. Colford J, et al. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosisin

sputum specimens: meta-analysis and metaregression.BMC Microbiol 2005; 5:55.

Tan WY, Stratton CW. Diagnosis of Mycobacterium tuberculosis.

Advanced techniques in diagnostic microbiology, 2nd Edition. Springer Newyork Heidelberg Dordrecht, London 2006;567.

Kubica GPW, Dye E, Cohn ML, Middlebrook G. Sputum digestion

and decontamination with N-acetyl-Lcysteine- sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis 1963; 87:775-779.

Waard JH, Robledo. Conventional diagnostic methods. In:

Palomino JC, Leão SC, Ritacco V (editors). Tuberculosis (Available from: www.TuberculosisTextbook.com). 2007;12:401-424.

Tuberculosis Division, International Union Against Tuberculosis

and Lung Disease. Tuberculosis bacteriology- priorities and indications in high prevalence countries: position of the technical staff of the Tuberculosis Division of the International Union Against. Int J Tuberc Lung Dis 2005; 9:355-361.

Telenti A, Marchesi F, Balz M, et al. Rapid identification of mycobacteria to the species level by polymerase chain reaction

and restriction enzyme analysis. J Clin Microbiol 1993;31:175–178.

Vincent V, Brown-Elliott BA, Jost KC, Wallace RJ. Mycobacterium:

phenotypic and genotypic identification, In Murray P. R., Baron E. J., Baron E. J., Pfaller M. A., Yolken R. H., editors.(ed.), Manual of clinical microbiology, 8th ed. American Society for Microbiology, Washington, DC.2003; p. 560–584.

Amplied MTD Test (amplified Mycobacterium tuberculosis

direct test for in vitro diagnostic use) [package insert] San Diego, CA: Gen-Probe 2001.

MagNA Pure LC Total Nucleic Acid Isolation Kit (Available

from:www.http://www.roche-applied-cience.com/shop/products/magna-pure-lc-total-nucleic-acid-isolation-kit)

Roche Molecular Systems, Inc, COBAS TaqMan MTB test

(2007) Roche Molecular Systems, Inc., Branchburg, NJ.

Biorad iCycler iQ™. Real-Time PCR Detection System. Instruction

Manual. Catalog Number: 170-8740.

Applied Biosystems, TaqMan® Universal PCR Master Mix,

Instruction Manual. Available from: www.appliedbiosystems.com

The LightCycler® 480 Real-Time PCR System Guide (2008)

Roche Applied Science, 68298 Mannheim, Germany, Roche

Diagnostics.

Rotor-Gene® Q and artus® PCR Kits -Pure Pathogen Detection

(2010) Available from: www.qiagen.com

AdvanSure TB/NTM real-time PCR kit procedures, LG Life

Sciences, Seul, Korea

Gardner MJ, Altman DG (ed.) Statistics with confidence. BMJ

Publishing Group, London, United Kingdom. 1989.

Gamboa F, Manterola JM, Lonca J, et al. Comparative evaluation

of two commercial assays for direct detection of Mycobacterium

tuberculosis in respiratory specimens. Eur J Clin Microbiol Infect Dis 1998; 17:151–156.

Kim YJ, Park MY, Kim SY, et al. Evaluation of the performances

of advanSure TB/NTM real time PCR Kit for detection of mycobacteria in respiratory specimens. Korean J Lab Med 2008; 28:34–38.

Yang YC, Lu PL, Huang SC, et al. Evaluation of the Cobas Taq Man MTB test for direct detection of Mycobacterium tuberculosis

complex in respiratory specimens. J Clin Microbiol 2011; 49(3):797-801. doi: 10.1128/JCM.01839-10.

Kim JH, Kim YJ, Ki CS, et al. Evaluation of COBAS TaqMan MTB PCR for detection of Mycobacterium tuberculosis. J Clin Microbiol 2011; 49:173–176.

Journal of Microbiology and Infectious Diseases-Cover
  • ISSN: 2146-3158
  • Başlangıç: 2011
  • Yayıncı: Sağlık Araştırmaları Derneği
Sayıdaki Diğer Makaleler

Microbiological evaluation of mycotic keratitis in north Maharashtra, India: A prospective study

Varsha KALSHETTİ, Surendra P. WADGAONKAR, Viraj M. BHATE, Rahul G. WADİLE, Neha HASWANİ, S.t. BOTHİKAR

Hearing loss: Can it be neurobrucellosis?

Hacer AKTÜRK, Asuman ÖZKAN, İlkay ODABAŞI, Tuğçe UZUNHAN, Nezahat GÜRLER, Oğuz EROL, Nuran SALMAN, Ayper SOMER

Brucella spondylodiscitis: Multifocal involvement in thoracic and lumbar areas; a rare case

Pınar KORKMAZ, Zeki ATAİZİ, Figen ÇEVİK, Nevil AYKIN, Hakkı GÜLDÜREN, Yeşim ALPAY, Gülay ŞİMŞEK

Leptomeningeal Carcinomatosis Originated from Breast Cancer

Seniha ŞENBAYRAK, Seyfi ÖZYÜREK, Orçun BARKAY, Çiğdem KUYUMCU, Fügen AKER

Acute invasive rhinosinusitis case caused by Aspergillus flavus in two patients prediagnosed with mucormycosis

Müge ASLAN, Yasemin ÖZ, Özcan BOR, Eren GÜNDÜZ, Filiz AKŞİT

The prevalence of HIV and the role of immigration in Albania

Besjana XHANİ, Brizilda REFETLLARİ, Edmond PUCA, Arben PİLACA, Klodiana SHKURTİ, Redona DUDUSHİ, Zhenisa HYSENAJ, Edmond DRAGOTİ

Diagnostic value of nine nucleic acid amplification test systems for Mycobacterium tuberculosis complex

Gülnur Tarhan, Salih Cesur, Hülya Şimşek, Ismail Ceyhan, Yusuf Ozay, Melike Atasever

Fungal endocarditis with right ventricular candidal mycetoma in a premature neonate

Jayashree PURKAYASTHA, Leslie LEWİS, Ramesh BHAT Y, Morakhia JWALİT V, Ranjan SHETTY K, Muhammad NAJİH L

Serum interleukin-6, interleukin -10, tumor necrosis factor -alpha, neopterin and plasma soluble urokinase plasminogen activator receptor levels in the patients with pandemic H1N1 influenza infection

Hasan IRMAK, Mustafa KARAHOCAĞİL, Salih CESUR, Yasemin FİDAN, Sema ÖZDAMAR, Erdem KARABULUT, Hayrettin AKDENİZ, Ali Demiröz

Hepatitis B and C Seroprevalence in Leprosy Patients

Türkkan KAYGUSUZ, Müge ÖZGÜLER, Leyla GÜNGÖR, Çiğdem PAPİLA