Detection of extended-spectrum and plasmid-mediated AmpC β-lactamases in nosocomial Klebsiella isolates

Amaç: Aynı Klebsiella suşunda heriki enzimin bir arada bulunması GSBL için yanlış-negatif test sonucuna neden olabilir; pAmpC'lerin klavulanik asit tarafından inhibisyona direnç göstermesi sonucu GSBL maskelenebilir. Bu çalışma fenotipik yöntem olan MAST 4-disk testi ile ve multipleks polimeraz zincir reaksiyonu (PCR) yöntemi ile GSBL ve pAmpC oranlarının saptanmasını amaçladı. Buna ek olarak bu enzimlerin tespitinde fenotipik yöntemin duyarlılığının değerlendirmesi amaçlandı.Yöntemler: Klebsiella izolatları Zagazig Üniversitesi Hastaneleri'nin farklı koğuşlarından elde edilen klinik örneklerden toplandı. Bu bakterilerin antibiyogramı disk difüzyon yöntemi ile belirlendi. İzolatlarda GSBL ve pAmpC varlığı fenotipik MAST 4-disk testi ve akabinde multiplex PCR yöntemi kullanılarak tespit edildi.Bulgular: Toplam olarak 38 Klebsiella pneumoniae suşu değerlendirildi. Bu izolatların % 65,8'i GSBL üretiyordu, % 2,6'sı pAmpC üretiyordu ve % 31,6'sı ne GSBL ne de pAmpC üretiyordu. En sık GSBL genotipi CMY (% 84) idi; bunu CMY (%44) izledi, PAmpC üretenler CMY genotipindeydi. Farklı GSBL genotiplerinin dağılımı CMY (% 84), CMY (% 44), CTX-M II genotipi (28%), CMY ve CTX-M IV genotipi (% 24) şeklinde idi. Referans yöntem olarak multipleks PCR alındığında MAST 4-disk testinin duyarlılığı % 92 ve özgüllüğü % 86,7 idi.Sonuç: K. pneumoniae arasında GSBL üreten suşların yükselen alarmı. Her iki enzimi üreten izolatlarda GSBL'lerin kesin tespiti, hem tedavi hem de epidemiyolojide önemlidir

Nozokomiyal Klebsiella suşlarında genişlemiş spektrumlu ve plazmid aracılı AmpC β-lactamazların saptanması

Objective: The coexistence of ESBLs and pAmpCs enzymes in the same Klebsiella strain may result in false-negative tests for the detection of ESBLs as pAmpCs resist inhibition by clavulanic acid so masking ESBL presence. This study was to highlight the detection rates of ESBLs and pAmpCs by using phenotypic method; MAST 4-disc test and multiplex polymerase chain reaction (PCR) method. In addition, it aimed to evaluate the sensitivity of the phenotypic method in detection of these enzymes.Methods: Klebsiella isolates were collected from clinical samples in different wards in Zagazig University Hospitals. The antibiogram of these bacteria was determined by disc diffusion method. The presence of ESBLs and pAmpCs within the isolates was determined using the phenotypic MAST 4-disc test followed by a multiplex PCR method.Results: In total, 38 Klebsiella pneumoniae strains were evaluated. Among these isolates, 65.8% were ESBL producers, 2.6% were pAmpC producers, and 31.6% were neither ESBL nor pAmpC producers. The most frequent genotype of ESBL was CMY (84%); followed by CMY (44%) before pAmpC producers were of CMY genotype. The distribution of different ESBL genotypes was CMY, CMY and CTX-M II genotype (28%) and followed by CMY and CTX-M IV genotype (24%). Using multiplex PCR as a reference method, MAST 4-disc test was of 92% sensitivity and 86.7% specificity.Conclusion: A rising alarm of ESBL producing strains among K. pneumoniae isolates. The exact detection of ESBLs in isolates that produce both enzymes is important for both treatment and epidemiology.

___

  • 1. Umeh O, Berkowitz LB. Klebsiella infections. Available at: http://emedicine.medscope.com/article/219907-overview. 2009
  • 2. Cocks S, Vaughan C. First validation of D69C MASTDISCS™ ID AmpC detection discs. Available at: http://www.pathologyinpractice.com. 2009
  • 3. Lorenz D, Stark D, Harkness J, Mariott D. Detection of ESBL and/or plasmid-mediated AmpC Β-lactamases enzymes in Enterobacteriaceae using MASTDISCS™ ID AmpC and ESBL detection discs and to compare this with current laboratory detection methods. Available at: http://www.mastgrp. com. 2009
  • 4. Moland ES, Kim SY, Hong SG, Thompson KS. Newer Β-lactamases: clinical and laboratory implications, part I and II. Clin Microbiol Newsletter 2008;30:71-85.
  • 5. Philippon A, Arlet G, Jacoby GA. Plasmid determined AmpCtype β-lactamases. Antimicrob Agents Chemother 2002;46: 1-11.
  • 6. Coudron PE. Inhibitor-based methods for detection of plasmidmediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43:4163- 4167.
  • 7. Jeong SH, Bae IK, Kwon SB, et al. Investigation of extendedspectrum ß-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Lett Appl Microbiol 2004;39:41-47.
  • 8. Powers RA, Blázquez J, Weston GS, Morosini MI, Baquero F, Shoichet BK. The complexed structure and antimicrobial activity of a non-β-lactam inhibitor of AmpC β-lactamase. Protein Sci 1999;8:2330-2337.
  • 9. Kim J, Jeon S, Rhie H, et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infect Chemother 2009;41:181-184.
  • 10. Robinson DH, Lafleche GJ. Nucleic acid electrophoresis in agarose gels. In: Brown, T.A. (ed.). Essential Molecular Biology, Volume 1, 1st ed, Oxford University Press Inc., New York 2004; 89-119.
  • 11. Marra AR, Pereira CA, Castelo A, et al. Health and economic outcomes of the detection of Klebsiella pneumoniae-produced Extended-Spectrum B-Lactamase (ESBL) in a hospital with high prevalence of this infection. Int J Infect Dis 2006;10:56-60.
  • 12. Vanwynsberghe T, Verhammeb K, Raymaekers M. A large hospital outbreak of Klebsiella pneumoniae (CMY-1 and CMY-11Positive): Importance of detection and treatment of ampC β-lactamases. Open Infect Dis J 2009;3:55-60.
  • 13. El-Kholy A, Baseem H, Hall GS, Procop GW, Longworth DL. Antimicrobial resistance in Cairo, Egypt 1999–2000: A survey of five hospitals. J Antimicrob Chemother 2003;51:625-630.
  • 14. Moland ES, Kim SY, Hong SG, Thompson KS. Newer Β-lactamases: clinical and laboratory implications, part I and II. Clin Microbiol Newsletter 2008;30:71-85.
  • 15. Luzzaro F, Mezzatesta M, Mugnaioli C. Trends in production of extended-spectrum (β)-lactamases among enterobacteria of medical interest: Report of the second Italian nationwide survey. J Clin Microbiol 2006;44:1659-1664.
  • 16. Sarojamma V, Ramakrishna V. Research article: Prevalence of ESBL-producing Klebsiella pneumoniae isolates in tertiary care hospital. Int. Scholarly Res. Network, 2011:1-5.
  • 17. Ellem J, Thomas L, Olma T, Iredell J. Comparison & evaluation of newly developed MAST 4-disc test for the detection of plasmid-mediated AmpC β-lactamases. Available at: http:// www.mastgrp.com. 2009
  • 18. Al-Agamy MH, El-Din Ashour MS, Wiegand I. First description of CTX-M β-lactamase-producing clinical Escherichia coli isolates from Egypt. Int J Antimicrob Agents 2006;27:545- 548.
  • 19. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. High prevalence of extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn Microbiol Infect Dis 2010;67:261–265.
  • 20. Chia J, Chu C, Su L, Chiu CH, Kuo AJ, Sun CF, et al. Development of a Multiplex PCR and CMY Melting-Curve Mutation Detection System for Detection of Some CMY and CTX-M β-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol 2005;43:4486-4491.
  • 21. Park YS, Yoo S, Seo M, Kim JY, Cho YK, Pai H. Risk factors and clinical features of infections causec by plasmid mediated AmpC β-lactamase-producing Enterobacteriaceae. Int J Antimicrob Agents 2009;34:38-43.