Antimicrobial Efficacy of Silymarin and Silibinin Against Oral Microorganisms

Objective: To evaluate the antimicrobial effect of silymarin and silibinin, a plant derived flavonoid compounds against oral microorganisms that are responsible for dental caries. Methods: In the current investigation, we analyzed the comparative antibacterial and antifungal effect of silibinin and silymarin against clinical cariogenic oral pathogens through evaluating their minimum inhibitory and minimum bactericidal concentration. We used clinical isolates that are responsible for dental caries and these include Candida albicans, Enterococcus faecalis, Lactobacillus acidophilus, Staphylococcus aureus and Streptococcus mutans to evaluate the anticariogenic potential of silymarin and silibinin. Results: In the present investigation, silymarin exhibit good antimicrobial effect against most of the oral cariogenic microorganisms tested when compared to silibinin. Interestingly, silymarin shows high sensitivity at a concentration of <5 µg/ml against S. mutans, L. acidophilus and C. albicans. On the other hand, silibinin also have significant antimicrobial effect against the oral pathogens.  Conclusions: Silymarin and silibinin can be used as appropriate drug candidates that control dental caries, endodontic infections. 

___

  • 1. Shoji M, Takeshita T, Maruyama F, Inaba H, Imai K, Kawada-Matsuo M. Recent advances in the field of oral bacteriology. Nihon Saikingaku Zasshi 2015;70(2):333-338. 2. Arweiler NB, Netuschil L. The Oral Microbiota. Adv Exp Med Biol 2016; 902:45-60. 3. Sangeetha S, Ezhilarasan D. In vitro antimicrobial activity of dandelion against orodental pathogens. IJPPR 2016;8(10);1598-1600. 4. Kim JH. Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria. J Nihon Univ Sch Dent 1997;39(3):136-141. 5. Korkina LG, Mikhal'chik E, Suprun MV, Pastore S, Dal Toso R. Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cell Mol Biol (Noisy-le-grand) 2007; 53(5):84-91. 6. Corona F, Blanco P, Alcalde-Rico M, et al. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med Chem 2016; 8(10):1133-1151. 7. Cha JD, Jeong MR, Jeong SI, et al. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytother Res 2007; 21(3):295-299. 8. Dahot MU. Antibacterial and antifungal activity of small protein of Indigofera oblongifolia leaves. J Ethnopharmacol 1999; 64(3):277-282. 9. Loguercio C, Festi D. Silybin and the liver: from basic research to clinical practice. World J Gastroenterol 2011;17(18):2288-2301. 10. Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia 1995; 66(1):3-42. 11. Ezhilarasan D, Evraerts J, Sid B, et al. Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. J Clin Exp Hepatol 2016;6(3): 167-174. 12. Ezhilarasan D, Karthikeyan S. Silibinin alleviates N-nitrosodimethylamine-induced glutathione dysregulation and hepatotoxicity in rats. Chin J Nat Med 2016;14(1):40-47. 13. de Oliveira DR, Tintino SR, Braga MF, et al. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. Biomed Res Int 2015;2015:292797. 14. Shah PM. Determination of MICs in the routine laboratory. J Antimicrob Chemother 2001; 48(6):931. 15. Anita P, Sivasamy S, Madan Kumar PD, Balan IN, Ethiraj S. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. J Basic Clin Pharm 2014;6(1):35-9. 16. Nittayananta W. Oral fungi in HIV: challenges in antifungal therapies. Oral Dis 2016;22 Suppl 1:107-13. 17. Pemán J, Quindós G. Current aspects of invasive diseases caused by Candida and other yeast fungi. Rev Iberoam Micol 2016. 18. Khanahmadi M, Rezazadeh SH, Taran M. In vitro antimicrobial and antioxidant properties of Smyrnium cordifolium Boiss. (Umbelliferae) extract. Asian J Plant Sci 2010;9:99-103. 19. Khalafi-Nezhada A, Soltani Rada MN, Mohabatkarb H, Asraria Z, Hemmateenejada B. Design, synthesis, antibacterial and QSAR studies of benzimidazole and imidazole chloroaryloxyalkyl derivatives Bioorg Med Chem 2005;13(6):1931-38. 20. Orhan DD, Ozçelik B, Ozgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res 2010; 165(6):496-504. 21. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26(5):343-56. 22. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12(4):564-82. 23. Tsuchiya H, Sato M, Miyazaki T, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 1996; 50(1):27-34. 24. Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J 2003;22(8):686-91. 25. Ford CB, Funt JM, Abbey D, et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 2015;4:e00662. 26. Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003;37(9):1172-177. 27. Pappas PG, Rex JH, Lee J, et al. NIAID Mycoses Study Group. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 2003; 37(5):634-43. 28. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012:713687.