Geriatrik hastalarda görülen cervical vertebralara ait osteofitlerin yapı ve yerleşimlerini bilgisayarlı tomografi yöntemi kullanılarak anatomik ve epidemiyolojik olarak incelenmesi

Amaç: Geriatrik bireylerin cervical vertebralarında görülen osteofitleri çeşitli parametrelerde değerlendirmektir. Materyal ve Metot: Çalışmamızda 2018-2023 yılları arasında devlet hastanesi radyoloji polikliniğine çeşitli sebeplerle gelen 764 (e:413, k:351) birey incelenmiştir. Bireylerde toplamda 1209 adet osteofit tespit edilmiştir. Osteofitler yaş, cinsiyet, derecelendirme, vertebra seviyesi, vertebral aralık, anatomik yön, anatomik yüzey ve uzunluk olarak değerlendirildi. Bulgular: Osteofit oluşumu bireylerde yaşa bağlı olarak artmaktadır (p<0,05). Erkeklerde kadınlara göre daha fazla sıklıkla osteofit oluşumu gözlenmiştir (p>0,05). Tüm bireylerde pençe tip osteofit sıklıkla görülmüştür (p<0,05). Erkeklerde sıklıkla kaynaşmış tip osteofit görülürken kadınlarda traksiyon tip osteofit daha fazla gözlenmiştir (p<0,05). Kaynaşmış osteofitler sıklıkla grade 4 şiddetinde görülürken pençe ve traksiyon tip osteofitler grade 2 şiddetinde görülmüştür (p<0,05). Tüm bireylerde osteofitler C5 vertebra seviyesinde sıklıkla gözlenmektedir (p>0,05). Kaynaşmış ve traksiyon tip osteofitler C6, pençe tip osteofitler ise C5 seviyesinde sıklıkla görülmektedir (p<0,05). Tüm bireylerde en fazla C5-6 aralığında osteofit görülmüştür (p>0,05). Her iki cinsiyet ve tüm osteofit tiplerinde osteofitler sıklıkla anteriorda görülmektedir (p<0,05). Tüm osteofit tipleri sıklıkla vertebranın facies inferiorunda gözlenmiştir (p<0,05). Erkeklerde kadınlara nispeten daha uzun ölçülerde (mm) osteofit görülmüştür (p<0,05). Pençe tip osteofit, traksiyon tip osteofite göre daha uzun ölçülerde tespit edilmiştir (p<0,05). Sonuç: Osteofit tipi ve grade şiddetinde bireyler arası değişkenlik göstermiştir. Osteofitlerde vertebra seviyesi, anatomik yön, yüzey, uzunluk parametrelerinde değişen özellikler gözlenmiştir.

Anatomical and epidemiological examination of the structure and localization of osteophytes of cervical vertebrae in geriatric patients by using computed tomography method

Background: To evaluate the osteophytes seen in the cervical vertebrae of geriatric individuals in various parameters. Materials and Methods: 764 (M: 413, F: 351) individuals who were admitted to the State Hospital Radiology Outpatient Clinic with various complaints between the years 2018 and 2023 and who met the criteria were examined in our study. A total of 1209 osteophytes were found in the individuals. The osteophytes were evaluated in terms of gender, age, grade, vertebral level, vertebral spacing, anatomical aspect, anatomical surface and length parameters. Results: Osteophyte formation increased with age in individuals (p<0.05). Osteophyte formation was observed more frequently in men when compared to women (p>0.05). Claw type osteophytes were observed commonly in all individuals (p<0.05). While fused type osteophytes were observed commonly in men, traction-type osteophytes were observed more frequently in women (p<0.05). Osteophyte formation of grade 2 severity was observed in all individuals (p>0.05). While fused osteophytes were commonly observed at grade 4 severity, claw and traction type osteophytes were observed at grade 2 severity (p<0.05). Osteophytes were commonly observed at the C5 vertebra level in all individuals (p>0.05). Fused and traction type osteophytes were commonly seen at the C6 level, while claw type osteophytes are commonly seen at the C5 level (p<0.05). In all individuals, osteophytes were most common in the C5-6 space, followed by the C4-5, C6-7 (p>0.05). Osteophytes were commonly seen anteriorly in both sexes and all osteophyte types (p<0.05). All osteophyte types were commonly observed in the inferior surface of the vertebra (p<0.05). Males had relatively longer osteophytes (mm) than females (p<0.05). Claw type osteophyte was observed in longer dimensions than traction type osteophyte (p<0.05) Conclusions: Osteophyte type and grade severity were found to vary between individuals. In the examinations, varying features were observed in the vertebral level, anatomical aspect, surface and length parameters of the osteophytes.

___

  • A. E. Van der Merwe, M. Y. I., E. N. L'Abbè. (2006). The pattern of vertebral osteophyte development in a South African population. International Journal of Osteoarchaeology, 16, 459–464. doi:10.1002/oa.841
  • Bogduk, N. (2016). Functional anatomy of the spine. Handb Clin Neurol, 136, 675-688. doi:10.1016/b978-0-444-53486-6.00032-6
  • Chen, D., Shen, J., Zhao, W., Wang, T., Han, L., Hamilton, J. L., & Im, H. J. (2017). Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res, 5, 16044. doi:10.1038/boneres.2016.44
  • Chiba, F., Inokuchi, G., Hoshioka, Y., Sakuma, A., Makino, Y., Torimitsu, S., . . . Iwase, H. (2022). Age estimation by evaluation of osteophytes in thoracic and lumbar vertebrae using postmortem CT images in a modern Japanese population. Int J Legal Med, 136(1), 261-267. doi:10.1007/s00414-021-02714-9
  • Ezra, D., Hershkovitz, I., Salame, K., Alperovitch-Najenson, D., & Slon, V. (2019). Osteophytes in the Cervical Vertebral Bodies (C3-C7)-Demographical Perspectives. Anat Rec (Hoboken), 302(2), 226-231. doi:10.1002/ar.23901
  • Ezra, D., Kedar, E., Salame, K., Alperovitch-Najenson, D., & Hershkovitz, I. (2022). Osteophytes on the zygapophyseal (facet) joints of the cervical spine (C3-C7): A skeletal study. Anat Rec (Hoboken), 305(5), 1065-1072. doi:10.1002/ar.24751
  • Fine, N., Lively, S., Séguin, C. A., Perruccio, A. V., Kapoor, M., & Rampersaud, R. (2023). Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol, 19(3), 136-152. doi:10.1038/s41584-022-00888-z
  • Gruber, H. E., Phillips, R., Ingram, J. A., Norton, H. J., & Hanley, E. N., Jr. (2014). Spontaneous age-related cervical disc degeneration in the sand rat. Clinical orthopaedics and related research, 472(6), 1936-1942. doi:10.1007/s11999-014-3497-x
  • Gustke, K. A., Cherian, J. J., Simon, P., & Morrison, T. A. (2022). Effect of Posterior Osteophytes on Total Knee Arthroplasty Coronal Soft Tissue Balance: Do They Matter? J Arthroplasty, 37(6s), S226-s230. doi:10.1016/j.arth.2022.01.034
  • Hong, S. W., Park, K. T., Chung, Y. S., Choi, Y. J., & Kang, J. H. (2021). Bone mineral density, cervical spine degeneration, head and neck posture, and neck pain in the post-menopausal females: A pilot study. PLoS One, 16(9), e0257735. doi:10.1371/journal.pone.0257735
  • Imes, C. C., & Burke, L. E. J. C. e. r. (2014). The obesity epidemic: the USA as a cautionary tale for the rest of the world. 1, 82-88.
  • Kaçar, E., Unlu, E., Beker-Acay, M., Balcik, C., Gultekin, M., Kocak, U., . . . Yucel, A. (2016). Age estimation by assessing the vertebral osteophytes with the aid of 3D CT imaging. Australian Journal of Forensic Sciences, 49, 1-10. doi:10.1080/00450618.2016.1167241
  • Kasai, Y., Kawakita, E., Sakakibara, T., Akeda, K., & Uchida, A. (2009). Direction of the formation of anterior lumbar vertebral osteophytes. BMC Musculoskelet Disord, 10, 4. doi:10.1186/1471-2474-10-4
  • Kim, D. K., Kim, M. J., Kim, Y. S., Oh, C. S., & Shin, D. H. (2012). Vertebral osteophyte of pre-modern Korean skeletons from Joseon tombs. Anat Cell Biol, 45(4), 274-281. doi:10.5115/acb.2012.45.4.274
  • Klaassen, Z., Tubbs, R. S., Apaydin, N., Hage, R., Jordan, R., & Loukas, M. J. A. s. i. (2011). Vertebral spinal osteophytes. 86(1), 1-9.
  • Kolz, J. M., Alvi, M. A., Bhatti, A. R., Tomov, M. N., Bydon, M., Sebastian, A. S., . . . Freedman, B. A. (2021). Anterior Cervical Osteophyte Resection for Treatment of Dysphagia. Global Spine J, 11(4), 488-499. doi:10.1177/2192568220912706
  • Kudo, Y., Toyone, T., Okano, I., Ishikawa, K., Tani, S., Matsuoka, A., . . . Inagaki, K. (2021). Radiological features of cervical spine in dropped head syndrome: a matched case-control study. Eur Spine J, 30(12), 3600-3606. doi:10.1007/s00586-021-06939-5
  • Ma, Y., Xin, Z., Kong, W., Zhang, L., Du, Q., & Liao, W. (2022). Transcorporeal decompression using a fully-endoscopic anterior cervical approach to treat cervical spondylotic myelopathy: surgical design and clinical application. BMC Musculoskelet Disord, 23(1), 1031. doi:10.1186/s12891-022-06001-5
  • Malatong, Y., Palee, P., Sinthubua, A., Na Lampang, S., & Mahakkanukrauh, P. (2022). Estimating age from digital radiographic images of lumbar vertebrae in a Thai population using an image analysis technique. Med Sci Law, 62(3), 180-187. doi:10.1177/00258024211062027
  • Marras, D., Palanca, M., & Cristofolini, L. (2021). Effects Induced by Osteophytes on the Strain Distribution in the Vertebral Body Under Different Loading Configurations. Front Bioeng Biotechnol, 9, 756609. doi:10.3389/fbioe.2021.756609
  • Park, M. S., Lee, Y. B., Moon, S. H., Lee, H. M., Kim, T. H., Oh, J. B., & Riew, K. D. (2014). Facet joint degeneration of the cervical spine: a computed tomographic analysis of 320 patients. Spine (Phila Pa 1976), 39(12), E713-718. doi:10.1097/brs.0000000000000326
  • Peng, Z., Liu, H., Hong, Y., & Meng, Y. (2022). Zero-Profile Implant System for Treatment of Dysphagia Caused by Noncontiguous Anterior Cervical Osteophytes-A Case Report with Literature Review. Orthop Surg, 14(10), 2782-2787. doi:10.1111/os.13398
  • Praneatpolgrang, S., Prasitwattanaseree, S., & Mahakkanukrauh, P. (2019). Age estimation equations using vertebral osteophyte formation in a Thai population: comparison and modified osteophyte scoring method. Anat Cell Biol, 52(2), 149-160. doi:10.5115/acb.2019.52.2.149
  • Sang, D., Du, C. F., Wu, B., Cai, X. Y., Cui, W., Yuchi, C. X., . . . Liu, B. (2021). The effect of cervical intervertebral disc degeneration on the motion path of instantaneous center of rotation at degenerated and adjacent segments: A finite element analysis. Comput Biol Med, 134, 104426. doi:10.1016/j.compbiomed.2021.104426
  • Sargon, M. (2016). Sobotta Anatomi Konu Kitabı.
  • Stanley, R. J., Antani, S., Long, R., Thoma, G., Gupta, K., & Das, M. (2008). Size-invariant descriptors for detecting regions of abnormal growth in cervical vertebrae. Comput Med Imaging Graph, 32(1), 44-52. doi:10.1016/j.compmedimag.2007.09.002
  • Suwanlikhid, N., Prasitwattanaseree, S., Palee, P., & Mahakkanukrauh, P. (2018). Age Estimation of Lumbar Vertebrae by Visual Assessment in a Thai Population. Clin Ter, 169(5), e204-e212. doi:10.7417/ct.2018.2080
  • Tao, Y., Galbusera, F., Niemeyer, F., Samartzis, D., Vogele, D., & Wilke, H. J. (2021). Radiographic cervical spine degenerative findings: a study on a large population from age 18 to 97 years. Eur Spine J, 30(2), 431-443. doi:10.1007/s00586-020-06615-0
  • TÜMERDEM, Y. J. T. J. o. G. (2006). Real age. 9(3).
  • Varışlı, B. J. A. J. o. E. M. (2018). Acil Servise Başvuran Geriatrik Yaş Grubu Hastaların Klinik, Demografik ve Maliyet Açısından İncelenmesi. 1(2), 18-24.
  • Wang, H. H., Wang, K., Deng, Z., Li, X. F., Qin, Y. X., Zhan, H. S., & Niu, W. X. (2019). Effects of facet joint degeneration on stress alterations in cervical spine C5-C6: A finite element analysis. Math Biosci Eng, 16(6), 7447-7457. doi:10.3934/mbe.2019373
  • Watanabe, S., & Terazawa, K. (2006). Age estimation from the degree of osteophyte formation of vertebral columns in Japanese. Leg Med (Tokyo), 8(3), 156-160. doi:10.1016/j.legalmed.2006.01.001
  • Wong, S. H., Chiu, K. Y., & Yan, C. H. (2016). Review Article: Osteophytes. J Orthop Surg (Hong Kong), 24(3), 403-410. doi:10.1177/1602400327
  • Yang, X., Bartels, R., Donk, R., Arts, M. P., Goedmakers, C. M. W., & Vleggeert-Lankamp, C. L. A. (2020). The association of cervical sagittal alignment with adjacent segment degeneration. Eur Spine J, 29(11), 2655-2664. doi:10.1007/s00586-019-06157-0
  • Zavras, A. G., Dandu, N., Espinoza-Orias, A. A., Singh, K., An, H. S., Inoue, N., & Colman, M. W. (2021). Computed Tomography Osteoabsorptiometry Evaluation of Cervical Endplate Subchondral Bone Mineral Density. Global Spine J, 21925682211050325. doi:10.1177/21925682211050325