Güneş Enerjili Hafif Aracın Ön Süspansiyon Sistemi Tasarımı

Güneş arabalarının özendirici temel ilkesi, çevreye saygılı bir tavırla güneşten enerji üretme potansiyelidir. Güneş enerjisiyle çalışan araçlara artan ilgi, temel olarak akademik kurumlar, öğrenciler, mühendisler, araştırmacılar ve ayrıca dünyanın dört bir yanındaki güneş enerjili araba ekipleri tarafından sürdürülebilir hareketliliği teşvik etmek amacıyla geliştirilen bir çalışma konusu olarak ortaya çıkmaktadır. Daha verimli araç, daha verimli süspansiyon sistemi, direksiyon sistemi, aracın dinamikleri gibi mekaniği üzerinde uygun optimizasyon çalışmalarını içermesi, alandaki çalışmalara yön vermesi anlamında önem arz etmektedir. Bu çalışmada, güneş enerjili aracın ön süspansiyon sisteminin sonlu eleman analizi yapılmıştır. İlgili askı sistemi parçaları üzerinde optimize edilecek bölgeler, bir topoloji optimizasyon çalışması ile gerçekleştirilmiştir. Devamında, yeni süspansiyon sisteminin parçaları ve geometrileri tasarlanmıştır. Bu çalışmanın ana amacı, yeni süspansiyon sisteminin kütle optimizasyonudur.

Front Suspension System Design of the Lightweight Solar-Powered Vehicle

The main principle encouraging by solar cars is the potentiality to produce energy from the sun with an attitude that respects the environment. Increasing interest in solar-powered vehicles arise as a topic of study mainly developed by academic institutions, students, engineers, researchers, and also solar car teams all around the world with the aim of promoting sustainable mobility, gives us the opportunity that enhances the make the more efficient solar car with include proper optimization on its mechanics like the suspension system, steering system, vehicle’s dynamics, etc. In this study, the finite element analysis of the front suspension system of the solar-powered vehicle was carried out. The regions to be optimized on the relevant suspension system parts were carried out by a topology optimization study. After that, parts and geometries of the new suspension system were designed. The main object of this study is mass optimization of the new suspension system.

___

  • Arsie I., Rizzo G., Sorrentino M., Optimal design and synamic simulation of a hybrid solar vehicle. SAE Technical Paper 2006-01-2997, 2006.
  • Bastow D., Howard G., Car suspension and handling, Society of Automotive Engineers, Third Edition Warrendale, PA, 1993.
  • Burdick I., Haynes C., Patzer N., Lightweight racing suspension project, Senior Design Project, Western Michigan University, 2019.
  • Camargo F. V., Fragassa C., Pavlovic A., Martignani M., Analysis of the suspension design evolution in solar cars, FME Transactions 45(3), 394-404, 2017.
  • Center for Sustainable Systems, University of Michigan, U.S. Renewable Energy Factsheet, Pub. No. CSS03-12, 2020.
  • Dhir N. S., Design and optimization of suspension geometry of a solar electric passenger vehicle, International Research Journal of Engineering and Technology 5(11), 207-214, 2018.
  • George B., Benny A. T., John A., Jose A., Francis D., Design and fabrication of steering and bracking system for all terrain vehicle, International Journal of Scientific and Engineering Reaserch 7(3), 7-18, 2016.
  • Gillespie T. D, Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, Warrendale, PA, 1992.
  • Harris W., 2020. How car suspensions work, https://auto.howstuffworks.com/car-suspension.htm (Date of Access: 06.02 2020).
  • Kawade G. H., Pharande R. D., Patil S. B., Design of steering and braking system for a solar car, International Journal for Research in Engineering Application & Management 4(10), 333-340, 2019.
  • Korkut T. B., Armakan E., Özaydin O., Gören A., Design and comparative strength analysis of wheel rims of a lightweight electric vehicle using Al6063 T6 and Al5083 aluminium alloys, Journal of Achievements of Materials and Manufacturing Engineering 2(99), 57-63, 2020.
  • Milliken W. F., Milliken D. L., Race car vehicle dynamics, Society of Automotive Engineers, Warrendale, PA, 1995.
  • Odabaşı V., Maglio S., Martini A., Sorrentino S., Static stress analysis of suspension systems for a solar-powered car, FME Transactions 47(1), 70-75, 2019.
  • Pechancová V., Renewable energy potential in the automotive sector: Czech regional case study, Journal of Security and Sustainability Issues 6(4), 537-545, 2017.
  • Roche D. M., Schinckel A. E. T., Storey J. W. V., Humphris C. P., Guelden M. R., Speed of light: The 1996 World Solar Challenge, Photovoltaics Special Research Center, University of New South Wales, Sydney, Australia, 1997.
  • Storey J. W. V, Schinckel A. E. T., Kyle C. R., Solar Racing Cars, Australian Government Publishing Service, Canberra, Australia, 1994.