Örnek Bir Marina Bölgesinde Yatlardan Kaynaklı Ortalama Salım Miktarlarının Hesaplanması

Bu çalışmanın amacı, IC Çeşme Marina içerisindeki yatların yanaşma ve kalkış manevraları sırasında ortaya çıkan karbon salım miktarlarını hesaplamayı amaçlamaktadır. Bu çalışmayı gerçekleştirmek için Çeşme marinadan yatların bir yıllık giriş-çıkış verileri, boyut ve makine bilgileri alınmıştır. Marinada yatların 3 knot hızla giriş çıkış kuralına uydukları varsayılmış, buna göre yakıt tüketimleri, makine yükü ve salım hesaplamaları yapılmıştır. Liman sahasından çıktıktan sonra da MCR’de gittikleri kabulü yapılmıştır. Ayrıca teorik hesaplar Çeşme marinadaki 3 millik alanı kapsayacak şekilde gerçekleştirilmiştir. 2017 yılı içerisinde yatların Çeşme marinada yaptıkları CO2 gazı salım miktarı hesaplanmış ve sonuç bölümünde bu miktarı azaltmak için yapılabilecek çalışmalara değinilmiştir. Hesaplar yapılırken 1,2 km’lik alan marina sahası olarak alınmış, geri kalan 4,3 km ise açık deniz bölgesi olarak adlandırılmıştır. Marina sahasında 6423,69 kg, açık denizde 10352,24 kg olmak üzere toplam 16775,94 kg ortalama karbon salımı gerçekleştiği hesaplanmıştır. Bu çalışma, Çeşme marina sahası içerisindeki yatlardan kaynaklanan egzoz salım envanterini ortaya koymaktadır. Salım değerlerinin düşürülebilmesi için yatlarda yenilenebilir enerji kullanımının yaygınlaşması gerekliliği gösterilmiştir.

___

  • Branislav Dragovic´, Ernestos Tzannatos, Vassilis Tselentis, Romeo Meštrovic´ & Maja Škuric´. (2015). Ship emissions and their externalities in cruise ports. Transportation Research Part D: Transport and Environment. Available online 31 December 2015.
  • Cooper, D. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37 (27), 3817–3830.
  • Fan, Q.Z., Zhang, Y., Ma, W.C., Ma, H.X., Feng, J.L., Yu, Q., Yang, X., Simon, K.W., NgFu, Q.Y. & Chen, L.M. (2016). Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence. Environmental Science & Technology, 50, 1322-1329.
  • Gibbs, D., Rigot-Muller, P., Mangan, J. & Lalwani, C. (2014). The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy 64, 337–348.
  • Goodenough, G.A. & Baker, J.B. (1927). A Thermodynamic analysis of internalcombustion engine cycles. University of Illinois Bulletin.
  • Hall, C. & Lew, A. (1998). Sustainable Tourism: A Geographical Perspective. 1. Baskı. Prentice-Hall, London.
  • IPCC (2007). Climate Change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change IPCC, Geneva, Switzerland.
  • Johnson, D. (2002). Environmentally sustainable cruise tourism: a reality check. Marine Policy, 26 (4), 261–270.
  • Mavrakou, T., Philippopoulos, K. & Deligiorgi, D. (2012). The impact of sea breeze under different synoptic patterns on air pollution within Athens basin. Sci. Total Environment, 433, 31-43.
  • Maragkogianni, A. & Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D, 36 (2015), 10–17.
  • Miola, A., Paccagnan, V., Mannino, I., Massarutto, A., Perujo, A.M.D.P. & Turvani, M. (2009). External Cost of Transportation-Case Study: Maritime Transport. JRC, European Commission, Brussels.
  • Papanastasiou, D.K. & Melas, D. (2009). Climatology and impact on air quality of sea breeze in an urban coastal environment. International Journal of Climatology, 29, 305-315.
  • Shell (2013). New lens on the future: A shift in perspective for a world in transition. https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/new-lenses-on-the-future.html. Erişim Tarihi: 17.02.2018.
  • Simmons, T. (2006). CO2 emissions from stationary combustion of fossil fuels. Good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC national greenhouse gas inventories programme.
  • Song, S., 2014. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmospheric Environment, 82, 288-297.
  • Tian, L., Ho, K.F., Louie, K.K., Qiu, H., Pun, V.C., Kan, H., Yu, I.T.S. & Wong, T.W. (2013). Shipping emissions associated with increased cardiovascular hospitalizations. Atmospheric Environment, 74, 320–325.
  • Villalba, G. & Gemechu, E.D. (2011). Estimating GHG emissions of marine ports - The case of Barcelona. Energy Policy 39 (3), 1363–1368.
  • Wild, I.Y. (2005). Determination of energy cost of electrical energy on board sea-going vessels. http://www.effship.com/PartnerArea/MiscPresentations/Dr_Wild_Report.pdf. Erişim Tarihi: 27.02.2018.
  • YANMAR. (2018), 6LPA-STZP2 series spefication datasheet. http://www.yanmarmarine.com/theme/yanmarportal/uploadedFiles/Marine/productDownloads/Pleasure-datasheet/English/2017_datasheets/Yanmar-Datasheet_6LPA-STZP2.pdf. Erişim Tarihi:15.02.2018
  • Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C.F., Cheng, Y. & Ho, K.F. (2012). Estimation of exhaust emission from ocean-going vessels in Hong Kong. Sci. Total Environment, 431, 299-306.
  • Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q. & Chen, L. (2013). Characteristics and ship traffic source identification of air pollutants in China's largest port. Atmospheric Environment, 64, 277-286.
  • Zi, T. (2015). An integrated approach to evaluating the coupling coordination between tourism and the environment. Tourism Management, 46, 11–19.