Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) Suşlarının Kesikli Kültür Sisteminde Yığın Kültürlerinin Üretimi Üzerine Bir Çalışma

Bu çalışmada, tatlısu birikintilerinde yaygın olarak bulunan, tek hücreli bir yeşil alg olan Chlorella vulgaris türünün izolasyonu, kültür koşullarının oluşturulması ve yığın kültürlerinin elde edilmesi amaçlanmıştır. C. vulgaris gıda, kozmetik ve eczacılık sektöründe kullanıldığı gibi, son yıllarda biyodizel üretiminde ve atık suların arıtımında da umut verici hale gelmiştir. Tatlısu birikintilerinden izole edilen C. vulgaris suşları kesikli kültür sistemi oluşturularak, 100, 200, 500, 1000, 2000 ve 4000 ml'lik hacimlerde üretimleri yapılmıştır. Suşların başlangıç inokulum miktarı, uygun pH, sıcaklık, havalandırma gibi etmenler denenerek optimum kültür koşulları oluşturulmuştur. 4000 ml'lik yığın kültürlerin 120. saatte yapılan hücre sayımlarında en yüksek değer AUFFH suşunda 6,8x104 h/ml olarak tespit edilmiş bu suşu sırasıyla; TOH 6,7x104 h/ml, UIK 6,3x104 h/ml, GURH 6,2x104 h/ml ve GUMSH 6,1x10 h/ml suşları izlemiştir. Yaş ağırlıkları açısından 4000 ml'lik yığın kültürler için yine AUFFH 152 (g/2000 ml) ile en yüksek miktar elde edilirken onu sırasıyla TOH 129,6 (g/2000 ml), GURH 120,8 (g/2000 ml), GUMSH 84,3 (g/2000 ml), UIK 48,8 (g/2000 ml) takip etmiştir.

A Study on the Production of Batch Cultures in Semi-Continuous Culture System of Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) Strains

In this study, it is aimed to isolate Chlorella vulgaris strain, a single-celled green algae that is common in freshwater deposits, to establish culture conditions and to obtain batch cultures. C. vulgaris has been used in food, cosmetics and pharmaceutical industries as well as become encouraging for the production of biodiesel and the treatment of wastewater in recent years. C. vulgaris strains isolated from freshwater deposits were cultivated in a semi-continuous culture system of 100, 200, 500, 1000, 2000 and 4000 ml. Subsequently growth factors such as initial inoculum amount of the strains, appropriate pH, temperature and ventilation were tested in order to optimize the conditions. The highest value in the cell counts of 4000 ml batch cultures at the 120th hours was determined as 6.8x104 h/ml in AUFFH strain respectively the others were as follows: TOH 6.7x104 h/ml, UIK 6.3x104 h/ml, GURH 6.2x104 h/ml and GUMSH 6.1x104 h/ml. The highest amount in terms wet weight for 4000 ml batch cultures was obtained as AUFFH 152 (g/2000 ml), this value was followed by TOH 129.6 (g/2000 ml), GURH 120.8 (g/2000 ml), GUMSH 84.3 (g/2000 ml), UIK 48.8 (g/2000 ml).

___

  • Aguoru CU, Okibe PO. 2015. Content and composition of lipid produced by Chlorella vulgaris for biodiesel production. Advances in Life Science and Tech. 36 (2015):96-100.
  • Al-lwayzy SH, Yusaf T, Al-Juboori RA. 2014. Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines. Energies 7(3):1829-1851.
  • doi:10.3390/en7031829 Amini KZ, Seyfabadi J, Ramezonpour Z. 2012. Effect of light intensity and photoperiod on bimass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult. Int. 20(1):41-49.
  • doi: 10.1007/s10499-011-9440-1 Andersen RA. 2005. Algal culturing techniques. Burlington: Elsevier Academic Press 578 p.
  • Baydar S. 1990. Tohumsuz bitkiler sistematiği. Trabzon: Karadeniz Teknik Üniversitesi 261 s.
  • Becker EW. 1994. Microalgae: biotechnology and microbiology. New York: Cambridge University Press 293 p.
  • Behrens PW. 2005. Photobioreactors and fermentors: the light and dark sides of growing algae. In: Andersen RA, editors. Algal culturing techniques, London: Elsevier Academic Press. p. 189-204.
  • Benli HA, Uçal O. 1990. Deniz canlı kaynakları yetiştirme teknikleri. Bodrum: T.C. Tarım, Orman ve Köy İşleri Bakanlığı, Su Ürünleri Araştırma Ens. Müd. Seri A. Yayın no:3 105 s.
  • Borcaklı M. 1987. Yeni gıda kaynağı olarak mikroalgler ve üretim yöntemleri. Kocaeli: TÜBİTAK MAM Beslenme ve Gıda Teknolojileri ile Soğutma Tekniği Araştırma Bölümü. Cilt 2. Yayın no:12. 73-86.
  • Borowitzka MA, Borowitzka JL. 1988. Micro-algal biotechnology. Cambridge: Cambridge University Press.
  • Brennan L, Owende P. 2009. Biofuels from microalgae - A review of technologies for production, processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14(2):557-577. doi:10.1016/j.rser.2009.10.009
  • Chia MA, Lombardi AT, Melao MDG. 2013. Growth and biochemical composition of Chlorella vulgaris in different growth media. An Acad Bras Cienc. 85(4):1427-1438. doi: 10.1590/0001-3765201393312
  • Chu WL, See TC, Phang SM. 2009. Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J Appl Phycol. 21(6): 641-648. doi: 10.1007/s10811-008-9396-3
  • Cirik S, Gökpınar Ş. 1993. Plankton Bilgisi ve Kültürü. İzmir: Ege Üniversitesi Basımevi 274 s. Cohen Z. 1999. Chemical from Microalgae. London: Taylor&Francis UK 419 p.
  • CSIRO 2016. Commonwealth Scientific and Industrial Research Organisation. Microalgal Isolation Techniques; [Erişim Tarihi: 29.11.2016]. Erişim Adresi:http://www.marine.csiro.au/microalgae/ methods/microalgal%20isolation%20techniques.htm
  • Feng P, Deng L, Hu F. 2012. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng. 114(4):405-410. doi: 10.1016/j.jbiosc.2012.05.007
  • Guillard RRL, Sierachiki MS. 2005. Counting cells in cultures with the light microscope. In: Andersen RA, editors. Algal culturing techniques, London: Elsevier Academic Press. p. 239-252.
  • Hakalin NLS, Paz AP, Aranda DAG, Moraes LMP. 2014. Enhancement of cell growth and lipid content of a freshwater microalga Scenedesmus sp. by optimizing nitrogen, phosphorus and vitamin concentrations for biodiesel production, Natural Science. 6(12):1044-1054. doi: 10.4236/ns.2014.612095
  • Hamedi S, Mahdavi MA, Gheshlaghi R. 2016. Improved lipid and biomass productivities in Chlorella vulgaris by differing inoculation medium from production medium. Biofuel Research Journal 10(2016):410-416. doi: 10.18331/BRJ2016.3.2.6
  • Hosikian A, Lim S, Halim R, Danquah KM. 2010. Chlorophyll extraction form microalgae: A review on the process engineering aspects. International Journal of Chemical Engin. 2010:1-11. doi: 10.1155/2010/391632
  • Iwamoto H. 2004. Industrial production of microalgal cellmass and secondary products-major industrial species Chlorella. In: Richmond A, editors. Handbook of microalgal culture: biotechnology and applied phycology. UK: Blackwell Science 255-263.
  • Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photo-bioreactors. Bioresour Technol. 116:307-313. doi: 10.1016/j.biortech.2012.03.074
  • Murdock JN, Wetzel DL. 2009. FT-IR Microspectroscopy enhances biological and ecological analysis of algae. Appl. Spectros. 44(4):335-361. doi: 10.1080/05704920902907440
  • Parvin M, Zannat MN, Habib MAB. 2007. Two important technique for isolation of microalgae. Asian Fisheries Science. 20(1):117-124.
  • Prescott GW. 1968. The algae. Boston: Michigan State University p. 37-67.
  • Prescott GW. 1973. Algae of the Western Great Lakes Area. Michigan: Michigan State University Department of Botany and Plant Pathology 1004 p. Rasmussen RS, Morrissey T, Steve LT. 2007.
  • ingredients. Advances in Food and Nutrition Res. 52 (2007):237-292. doi: 10.1016/S1043-4526(06)52005-4 Richmond A. 2004. Handbook of microalgal culture: biotechnology and applied phycology. 2nd ed. Australia: Blackwell Science Ltd. 719 p.
  • Ruiz-Marin A, Mendoza-Espinosa L, Stephenson T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Techno. 101(1): 58-64. doi: 10.1016/j.biortech.2009.02.076
  • Santhosh S, Dhandapani R, Hemalatha NA. 2016. A Review on potential biotechnological applications of microalgae. J App Pharm Sci. 6(08): 179-184. doi: 10.7324/JAPS.2016.60829
  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. 2008. Second generation biofuels: high-efficiency microalgae for biodisel production. BioEnergy Res. 1(1):20-43.
  • doi: 10.1007/s12155-008-9008-8 Shihira I. 1965. Chlorella physiology and taxonomy of forty-one isolates. Maryland: University of Maryland, College Park 97 p.
  • Vaiciulyte S, Padovani, G, Kostkeviciene J, Carlozzi P. 2014. Batch growth of Chlorella vulgaris CCALA 896 versus semi-continuous regimen for enhancing oil-rich biomass productivitiy. Energies 7(6):3840-3857. doi:10.3390/en7063840