Understanding canine aggression: Neurobiological insights for a complex behavior

Understanding canine aggression: Neurobiological insights for a complex behavior

The relationship between humans and dogs, as the first domesticated animals, exemplifies a significant aspect of human-animal interaction. During domestication, dogs have undergone behavioral changes to establish closer bonds with humans. However, certain dogs face challenges in fully adapting to their new environment, leading to behavioral disorders such as aggression. One of the most prevalent and dangerous behavioral problems in dogs is aggression, which poses risks to both humans and the dogs themselves, sometimes resulting in euthanasia. Canine aggression can arise from various medical and non-medical factors, including physical problems, endocrine system disorders, infectious diseases, central nervous system diseases, hereditary conditions, as well as racial or personal differences. Evaluating aggression based solely on species, breed, and sex characteristics is insufficient. Accurate diagnosis of aggressive behavior requires integrating findings from diverse diagnostic methods, including serum biochemistry, hormone analysis, urinalysis, electroencephalography, radiography, magnetic resonance tests, and behavioral assessments. However, to gain a comprehensive understanding of canine aggression, it is essential to consider the underlying pathophysiological processes and neurobiology. The management of aggressive behavior in dogs necessitates the implementation of diverse treatment strategies aimed at preventing the manifestation of undesirable behaviors. Within the realm of medical interventions, neutering and pharmacotherapy have emerged as prominent approaches. Neutering has shown effectiveness in mitigating aggression among dogs exhibiting aggressive tendencies. On the other hand, pharmacotherapy involves the utilization of complementary and suppressive pharmacological agents that target primary and intermediate components within the mechanisms underlying aggression. These components encompass neurotransmitter/neuromodulator substances, peptides, enzymes, and hormones, all of which contribute to the pathophysiological processes of aggression. Through the modulation of these factors, pharmacotherapy seeks to offer a comprehensive treatment approach for addressing aggressive behavior in dogs. This review aims to investigate the neurobiological basis of aggression in dogs, considering the underlying pathophysiological processes and the role of neurotransmitter/neuromodulator substances, neuropeptides, peptides, enzyme systems, and hormones. Accurate diagnosis and understanding of canine aggression are crucial for the development of effective medical and alternative treatment methods.

___

  • Almeida, R. M. M., Ferrari, P. F., Parmigiani, S., Miczek, K. A. (2005). Escalated aggressive behavior: Dopamine, serotonin and GABA. European Journal of Pharmacology, 526, 51–64.
  • Almeida-Montes, L. G., Valles-Sanchez, V., Moreno-Aguilar, J. (2000). Relation of serum cholesterol, lipid, serotonin and tryptofhan levels to severity of depression and to suicide attempts. Journal of Psychiatry and Neuroscience, 25 (4), 371-377.
  • Aronson, L. (1998). Systemic causes of aggression and their treatment. In Psychopharmacology of Animal Behavior Disorders. Eds N. H. Dodman, L. Shuster. Oxford, Blackwell Science, 88-92.
  • Askew, H. R. (1996). Treatment of Behavior Problems in Dogs and Cats. Blackwell Science, Oxford. Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J. P., Bouguiyoud, N., Giovanni, G., Cattaert, D., Deurwaerdère, P. (2020). Serotonin in Animal Cognition and Behavior. International Journal of Molecular Sciences, 21(5), 1649.
  • Batmaz, T. (2021). Toplumsal Cinsiyet Bağlamında Evcil Hayvan Besleme Davranışı Olarak Pitbull Tercihi, 9. Türkiye Lisansüstü Çalışmalar Kongresi Bildiriler Kitabı – IV, 325-347.
  • Bauer, M., Heinz, A., Whybrow, P. C. (2002). Thyroid hormones, serotonin, and mood: of synergy and significance in the adult brain. Molecular Psychiatry, 7, 140-156.
  • Beauchaine, T. P., Gartner, J., Hagen, B. (2000). Comorbid depression and heart rate variability as predictors of aggressive and hyperactive symptom responsiveness during inpatient treatment of conduct-disordered. ADHD boys. Aggressive Behavior, 26, 425–441.
  • Beaver, B. (1992). Canine behavior, aguide for veterinarians, 1th edition, W. B. Saunders Co, Philadelpia, X+355.
  • Beaver, B. V. (1983). Clinical classification of canine aggression. Applied Animal Ethology, 10, 35–43.
  • Beaver, B. V. (1999). Canine social behavior. In: Beaver, B.V. (Ed.), Canine Behavior: A Guide for Veterinarians. W.B. Saunders, Philadelphia, PA, USA, 151–175.
  • Beaver, B. V. & Haug, L. I. (2003). Canine behaviors associated with hypothyroidism. Journal of the American Animal Hospital Association, 39, 431–434.
  • Beitchman, J. H., Zai, C. C., Muir, K., Berall, L., Nowrouzi, B., Choi, E. (2012). Childhood aggression, callous-unemotional traits and oxytocin genes. European Child & Adolescent Psychiatry, 21, 125-132.
  • Berger, M., Gray, J. A., Roth, B. L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355-366.
  • Bernal, J. (2005). Thyroid hormones and brain development. Vitamins and hormones, 71, 95–122.
  • Bernal, J. and Nunez, J. (1995). Thyroid hormones and brain development. European Journal of Endocrinology, 133 (4), 390–398.
  • Bielsky, I. F. and Young, L. J. (2004). Oxytocin, vasopressin, and social recognition in mammals. Peptides, 25, 1565–1574.
  • Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F., Young, L. J. (2005). The V1a vasopressin receptor is necessary and sufficient for normal social recognition: A gene replacement study. Neuron, 47, 503–513.
  • Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H., Young, L. J. (2004). Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology, 29, 483–493.
  • Blacksaw, J. K. (1991). An overwiew of types of agressive behaviour in dogs and methods of treatment. Applied Animal Behaviour Science, 30, 351-361.
  • Brent, G. A. (2012). Mechanisms of thyroid hormone action. Journal of Clinical Investigation, 122, 3035–3043.
  • Buisman-Pijlman, F. T., Sumracki, N. M., Gordon, J. J., Hull, P. R., Carter, C. S., Tops, M. (2014). Individual differences underlying susceptibility to addiction: Role for the endogenous oxytocin system. Pharmacology Biochemistry and Behavior, 119, 22-38.
  • Çakıroğlu, D., Meral, Y., Sancak, A., Çiftçi, G. (2007). Relationship between the serum concentrations of serotonin and lipids and aggression in dogs. The Veterinary Record, 161(2), 59-61.
  • Camps, T., Amat, M., Manteca, X. (2019). A review of medical conditions and behavioral problems in dogs and cats. Animals, 9(12), 1133.
  • Chapman, B. L. and Voith,V. L. (1990). Behavioral problems in old dogs 26 cases (1984-1987). Journal of the American Veterinary Medical Association.
  • Cheng, S. Y., Leonard, J. L., Davis, P. J. (2010). Molecular aspects of thyroid hormone actions. Endocrine Reviews, 31, 139 –170.
  • Choleris, E., Gustafsson, J. A., Korach, K. S., Muglia, L. J., Pfaff, D. W., Ogawa, S. (2003). An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogen receptor-alpha and -beta knockout mice. Proceedings of the National Academy of Sciences , 100, 6192–6197.
  • Churchland, P. S. and Winkielman, P. (2012). Modulating social behavior with oxytocin: how does it work? what does it mean? Hormones and Behavior, 61, 392-399.
  • Crawley, J. N., Chen, T., Puri, A., Washburn, R., Sullivan, T. L., Hill, J. M., Young, N. B., Nadler, J. J., Moy, S. S., Young, L. J., Caldwell, H. K., Young, WS. (2007). Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments. Neuropeptides, 41, 145–163.
  • de Oliveira, D. C., Zuardi, A. W., Graeff, F. G., Queiroz, R. H., Crippa, J. A. (2012). Anxiolytic-like effect of oxytocin in the simulated public speaking test. Journal of Psychopharmacology, 26, 497–504.
  • Diederich, N. J., Moore, C. G., Leurgans, S. E., Chmura, T. A., Goetz, C. G. (2003). Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset. Archives of neurology, 60, 529–533.
  • Dodman, H. D., Donnelly, R., Shuster, L., Mertens, P., Rand, W., Miczek, K. (1996a). Use of fluoxetine to treat dominance aggression in dogs. Journal of America Veterinary Medicine Association, 209, 1585-1587.
  • Dodman, N. H., Moon, R., Zelin, M. (1996c). Influence of owner personality type on expression and treatment outcome of dominance aggression in dogs. Journal of America Veterinary Medicine Association, 209, 1107-1109.
  • Dodman, N. H., Reisner, I., Shuster, L., Rand, W., Luescher, U. A., Robinson, I. & Houpt, K. A. (1996b). Effect of dietary protein content on behavior in dogs. Journal of America Veterinary Medicine Association, 208, 376-379.
  • Dodurka, H. T. (1999). Köpek Psikolojisi, 1. Baskı, Teknik Yayınları, İstanbul, XII+201.
  • Dodurka, H. T. (2001). Köpeklerde görülen davranış sorunları ve bunlara etki etmesi. Yüksek lisans Tezi, Sosyal Bilimler Estitüsü.
  • Dodurka, H. T. (2005). Köpeklerde Davranış Sorunları. 1. Baskı, Remzi Kitabevi, İstanbul. Duffy, D. L., Hsu, Y., Serpell, J. A. (2008). Breed differences in canine aggression. Applied Animal Behaviour Science, 114, 441–460.
  • Engelmann, M., Landgraf, R., Wotjak, C. T. (2004). The hypothalamicneurohypophysial system regulates the hypothalamic-pituitaryadrenal axis under stress: an old concept revisited. Frontiers in Endocrinology, 25, 132-149.
  • Feddersen-Petersen, D. (1990). Behavior of dogs. Dtsch Tierarztl Wochenschr, 97(6), 231-236.
  • Fekete, C. and Lechan, R. M. (2014). Central Regulation of Hypothalamic-Pituitary-Thyroid Axis under Physiological and Pathophysiological Conditions. Endocrine Reviews, 35, 159–194.
  • Ferguson, J. N., Young, L. J., Hearn, E. F., Matzuk, M. M., Insel, T. R., Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288.
  • Fitzgerald, P. (1999). Long-acting antipsychotic medication, restraint and treatment in the management of acute psychosis. Australian & New Zealand Journal of Psychiatry, 33, 660–666.
  • Frasch, A., Zetzsche, T., Steiger, A., Jirikowski, G. F. (1995). Reduction of plasma oxytocin levels in patients suffering from major depression. Advances in Experimental Medicine and Biology, 395, 257-258.
  • Gary, K. A., Winokur, A., Douglas, S. D., Kapoor, S., Zaugg, L., Dinges, D. F. (1996). Total sleep deprivation and the thyroid axis: effects of sleep and waking activity. Aviation, Space, and Environmental Medicine, 67, 513–519.
  • Glazer, W. M. and Dickson, R. A. (1998). Clozapine reduces violence and persistent aggression in schizophrenia. Journal of Clinical Psychiatry, 59(Suppl 3), 8–14.
  • Gou, Z. H., Wang, X., Wang, W. (2012). Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 33, E75-E81.
  • Graham, P. A., Lundquist, R. B., Refsal, K. R., Nachreiner, R. F. (2004). Reported clinical signs in 8317 cases of canine hypothyroidism and 2647 cases of subclinical thyroiditis. In: 2004 Scientific Proceedings of the British Small Animal Veterinary Association Congress, Birmingham, UK, 529.
  • Gunter, L. M., Barber, R. T., Wynne, C. D. L. (2016). What's in a Name? Effect of Breed Perceptions & Labeling on Attractiveness, Adoptions & Length of Stay for Pit-Bull-Type Dogs, PLoS One, 11(3), e0146857.
  • Hall, J. E., Simon, T. R., Lee, R. D., Mercy, J. A. (2012). Implications of direct protective factors for public health research and prevention strategies to reduce youth violence. American Journal of Preventive Medicine, 43(2 Suppl 1), S76–S83.
  • Hansen, N. and Manahan-Vaughan, D. (2012). Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cerebral Cortex, 24, 845-858.
  • Henley, W. N. and Koehnle, T. J. (1997). Thyroid hormones and the treatment of depression: an examination of basic hormonal actions in the mature mammalian brain. Synapse, 27(1), 36–44.
  • Henley, W. N. and Valdic, F. (1997). Hypothyroid-induced changes in autonomic control have a central serotonergic component. American Journal of Physiology-Heart and Circulatory Physiology, 272, 894–903.
  • Henley, W. N., Chen, S., Klettner, C., Bellush, L., Notestine, M. A. (1991). Hypothyroidism increases serotonin turnover and sympathetic activity in the adult rat. Canadian Journal of Physiology and Pharmacology, 69, 205–210.
  • Holt-Lunstad, J., Birmingham, W., Light, K. C. (2011). The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology, 36, 1249-1256.
  • Horwitz, D. F. (2000). Differences and similarities between behavioral and internal medicine. Journal of America Veterinary Medicine Association, 217, 1372-1376
  • Houpt, K. A. and Reisner, I. R. (1995). Behavioral disoders, volume 1, 4th edition. Editors: Etine, S. J. and Feldman, E. C. Veterinary Internal Medicine. W. B. Saunders Co. Philadelphia, 179-187.
  • Houpt, K. A., Honig, S. U., Reisner, I. R. (1996). Breaking the human-Companion animal bond. Journal of America Veterinary Medicine Association, 208, 1653-1658.
  • Hsu, Y. and Serpell, J. A., (2003). Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. Journal of America Veterinary Medicine Association, 223, 1293–1300.
  • Indrieri, R. J., Whalen, L. R., Cardinet, G. H., Holliday, T. A. (1987). Neuromuscular abnormalities associated with hypothyroidism and lymphocytic thyroiditis in three dogs. Journal of the American Veterinary Medical Association, 190(5), 544–548.
  • Insel, T. R. (2010). The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768-779.
  • Ishak, W. W., Kahloon, M., Fakhry, H. (2011). Oxytocin role in enhancing well-being: a literature review. Journal of Affective Disorders, 130, 1-9.
  • Ito, J. M., Valcana, T., Timiras, P. S. (1977). Effect of hypo- and hyperthyroidism on regional monoamine metabolism in the adult rat brain. Neuroendocrinology, 24(1), 55–64.
  • Jackson, I. M. D. (1982). Thyrotropin-releasing hormone. The New England Journal of Medicine, 306, 145–155.
  • Jagoe, J. A. (1994). Behaviour problems in the domestic dog: a retrospective and prospective study to identify factors influencing their development (Doctoral thesis). https://doi.org/10.17863/CAM.31066Phd thesis.
  • Juarbe-Diaz, S. V. (2002). Behavioral imposters of medical disorders in small animals, In: Proceedings of the Forum of the American College of Veterinary Internal Medicine.
  • Kennedy, J. S., Bymaster, F. P., Schuh, L., Calligaro, D. O., Nomikos, G., Felder, C. C., Bernauer, M., Kinon, B. J.,
  • Baker, R. W., Hay, D., Roth, H., Dossenbach, M., Kaiser, C., Beasley, C. M., Holcombe, J. H., Effron, M. B., Breier, A. (2001). A current review of olanzapine's safety in the geriatric patient: from pre-clinical pharmacology to clinical data. International Journal of Geriatric Psychiatry, 16, 33–61.
  • Kırlı, S. (2000). Depresyonun Biyolojik Oluşumu ve Farmakolojik Tedavisi, F. Özcan Matbaacılık San. Ve Tic. Ltd. Şti., Bursa, 31-97.
  • Kogan, L. R., Schoenfeld-Tacher, R. M., Hellyer, P. W., Oxley, J. A., Rishniw, M. (2019). Small Animal Veterinarians' Perceptions, Experiences, and Views of Common Dog Breeds, Dog Aggression, and Breed-Specific Laws in the United States. International Journal of Environmental Research and Public Health, 16(21), 4081.
  • Kuhne, F. (2012). Castration of dogs from the standpoint of behaviour therapy. Tierarztl Prax Ausg K Kleintiere Heimtiere, 40(2), 140-145.
  • Kwan, J. Y. and Bain, M. J. (2013). Owner attachment and problem behaviors related to relinquishment and training techniques of dogs. Journal of applied animal welfare science, 16(2), 168-183.
  • Landsberg, G. M. (1990). Diagnosing dominance agresyon. Canadian Veterinary Journal, 31, 45-46.
  • Landsberg, G. M., Hunthausen, W. L., Ackerman, L. J. (1997). Handbook of behavior problems of the dog and cat. Saunders.
  • Lee, G. and Gammie, S. C. (2009). GABAA receptor signaling in the lateral septum regulates maternal aggression in mice. Behavioral Neuroscience, 123(6), 1169-1177.
  • Lee, R., Ferris, C., Van de Kar, L. D., Coccaro, E. F. (2009). Cerebrospinal fluid oxytocin, life history of aggression, and personality disorder. Psychoneuroendocrinology, 34, 1567-1573.
  • Lesch, K. L. and Merschdorf, U. (2000). Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behavioral Science and Law, 18, 581-604.
  • Liinamo, A., van den Berg, L., Leegwater, P. A. J., Schilder, M.B.H., van Arendonk, J.A.M., van Oost, B.A., (2007). Genetic variation in aggression-related traits in golden retriever dogs. Applied Animal Behaviour Science. 104, 95–106.
  • MacNeil-Allcock, A., Clarke, N. M., Ledger, R. A., Fraser, D. (2011). Aggression, behaviour, and animal care among pit bulls and other dogs adopted from an animal shelter. Animal Welfare, 20, 463-468.
  • Mano, T., Sakamoto, H., Fujita, K., Makino, M., Kakizawa, H., Nagata, M., Kotake, M., Hamada, M., Uchimura, K., Hayakawa, N., Hayashi, R., Nakai, A., Itoh, M., Kuzuya, H., Nagasaka, A. (1998). Effects of thyroid hormone on catecholamine and its metabolite concentrations in rat cardiac muscle and cerebral cortex. Thyroid, 8, 353–358.
  • Masi, G. (2004). Pharmacotherapy of pervasive developmental disorders in children and adolescents. CNS Drugs, 18, 1031–1052.
  • Mertens, P. and Dodman, N. (2003). Animal behavior case of the month. Journal of the American Veterinary Medical Association, 223, 1436-1442.
  • Miczek, K. A., de Almeida, R. M. M., Kravitz, E. A., Rissman, E. F., de Boer, S. F., Raine, A. (2007). Neurobiology of escalated aggression and violence. Journal of Neuroscience, 27, 11803–11806.
  • Miczek, K. A., Faccidomo, S., de Almeida, R. M., Bannai, M., Fish, E. W., de Bold, J. F. (2004). Escalated aggressive behavior: new pharmacotherapeutic approaches and opportunities. Annals of the New York Academy of Sciences journal, 1036, 336–355.
  • Miczek, K. A., Fish, E. W., de Bold, J. F. (2003). Neurosteroids, GABAA receptors, and escalated aggressive behavior. Hormones and Behavior, 44, 242-257.
  • Miczek, K. A., Fish, E. W., de Bold, J. F., de Almeida, R. M. M. (2002). Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and c-aminobutyric acid systems. Psychopharmacology, 163, 434–458.
  • Miller, K. A., Touroo, R., Spain, C. V., Jones, K., Reid, P., Lockwood, R. (2016). Relationship Between Scarring and Dog Aggression in Pit Bull-Type Dogs Involved in Organized Dogfighting. Animals, 6, 72.
  • Mokler, D. J., Dugal, J. R., Hoffman, J. M., Morgane, P. J. (2009). Functional interrelations between nucleus raphé dorsalis and nucleus raphé medianus: a dual probe microdialysis study of glutamate-stimulated serotonin release. Brain Research Bulletin, 78, 132-138.
  • Motomura, K. and Brent, G. A. (1998). Mechanisms of thyroid hormone action. Implications for the clinical manifestation of thyrotoxicosis. Endocrinology & Metabolism Clinics of North America, 27, 1–23.
  • Neumann, I. D. (2007). Stimuli and consequences of dendritic release of oxytocin within the brain. Biochemical Society Transactions, 35, 1252-1257.
  • Niyyat, M. R., Azizzadeh, M., Khoshnegah, J. (2018). Effect of Supplementation with Omega-3 Fatty Acids, Magnesium, and Zinc on Canine Behavioral Disorders: Results of a Pilot Study. Topics in Companion Animal Medicine, 33(4), 150-155.
  • Notari, L., Burman, O., Mills, D. (2015). Behavioural changes in dogs treated with corticosteroids. Physiology & behavior, 151, 609-616.
  • Noyan, A. (2007). Yaşamda ve Hekimlikte Fizyoloji, Palme Yayınları.
  • O’Farrell, V. (1992). Manual of canine behviour 2th edition, Cheltenhan Glos British Small Animal Veterinary Assoiation, XII+132.
  • Odendaal, J. S. J. (1997). A Diagnostic Classification of Problem Behavior in Dogs and Cats. Veterinary Clinics of North America: Small Animal Practice, 27, 427-442.
  • Odore, R., Rendini, D., Badino, P., Gardini, G., Cagnotti, G., Meucci, V., Intorre, L., Bellino, C., D'Angelo, A. (2020). Behavioral Therapy and Fluoxetine Treatment in Aggressive Dogs: A Case Study. Animals (Basel), 10(5), 832.
  • O-Klein, M., Battagello, D. S., Cardoso, A. R., Hauser, D. N., Bittencourt, J. C., Correa, R. G. (2019). Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cellular and Molecular Neurobiology, 39(1), 31-59.
  • Overall, K. L. (1997). Pharmacologic treatments for behavior problems. Veterinary Clinics of North America: Small Animal Practice, 27, 637-665.
  • Ozsoy, S., Esel, E., Kula, M. (2009). Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Research, 169, 249-252.
  • Pineda, S., Anzola, B., Olivares, A., Ibáñez, M. (2014). Fluoxetine combined with clorazepate dipotassium and behaviour modification for treatment of anxiety-related disorders in dogs. The Veterinary Journal, 199(3), 387-391.
  • Quadros, I. M., Miguel, T. T., de Bold, J. F., Miczek, K. A. (2009a). Opposing action of CRF1 vs. CRF2 receptors in the dorsal raphé: modulation of alcohol-heightened aggression. Neuroscience meeting planner. Society for neuroscience, Chicago, Program No. 445.5/T8.
  • Quadros, I. M., Takahashi, A., Miczek, K. A. (2009b). Serotonin and aggression. In: Müller CP, Jacobs BL (eds)
  • Handbook of the behavioral neurobiology of serotonin. Academic Press, 687–714.
  • Rapport, M. M., Green, A. A., Page, I. H. (1948). Serum vasoconstrictor, serotonin; isolation and characterization. Journal of Biological Chemistry, 176, 243–251.
  • Reisner, I. R., Erb, H. N., Houpt, K. A. (1994). Risk factors for behavior-related euthanasia among dominant-aggressive dogs: 110 cases (1989-1992). Journal of America Veterinary Medicine Association, 205, 855-863.
  • Reisner, I. R., Mann, J. J., Stanley, M., Huang, Y., Houpta, K. A. (1996). Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs. Brain Research, 714 (1-2), 57-64.
  • Resmi Gazete, 01.07.2004; https://www.resmigazete.gov.tr/eskiler/2004/07/20040701.htm
  • Resmi Gazete, 14.07.2021; https://www.resmigazete.gov.tr/eskiler/2021/07/20210714-9.htm
  • Rosell, D. R. and Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20, 254–279.
  • Roth, B. L., (2007). editor. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics. Totowa, NJ: Humana.
  • Sanchez, C., Arnt, J., Hyttel, J., Moltzen, E. K. (1993). The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology, 110, 53–59.
  • Serpell, J. A. and Hsu, Y. A. (2005). Effects of breed, sex, and neuter status on trainability in dogs. Anthrozoös, 18(3), 196-207.
  • Siddiq, A. B. (2019). Tarih öncesi toplumlarda insan-hayvan ilişkisi ve Orta Anadolu çanak çömleksiz neolitik dönem faunası. 1. Baskı. Konya: Çizgi Kitabevi.
  • Stepherd, R. C. (2018). Pit Bull: Journal. Independently published, ISBN-10: ‎ 1720108668.
  • Strawn, J. R., Ekhator, N. N., D’Souza, B. B., Geracioti Jr, T. D. (2004). Pituitary-thyroid state correlates with central dopaminergic and serotonergic activity in healthy humans. Neuropsychobiology, 49, 84–87.
  • Sweidan, S., Edinger, H., Siegel, A. (1991). D2 dopamine receptor-mediated mechanisms in the medial preoptic-anterior hypothalamus regulate effective defense behavior in the cat. Brain Research, 549, 127–137.
  • Takahashi, A., Kwa, C., de Bold, J. F., Miczek, K. A. (2010a). GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology, 211, 467-477.
  • Takahashi, A., Quadros, I. M., de Almeida, R. M., Miczek, K. A. (2011). Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology, 213, 183–212.
  • Takahashi, A., Quadros, I. M., de Almeida, R. M., Miczek, K. A. (2012). Behavioral and pharmacogenetics of aggressive behavior. Current Topics in Behavioral Neurosciences, 12, 73-138.
  • Takahashi, A., Shimamoto, A., Boyson, C. O., De Bold, J. F., Miczek, K. A. (2010b). GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice. Journal of Neuroscience, 30(35), 11771-11780.
  • Takayanagi, Y., Yoshida, M., Bielsky, I. F., Ross, H. E., Kawamata, M., Onaka, T. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America , 102, 16096-16101.
  • Tidey, J. W. and Miczek, K. (1992a). Effects of SKF38393 and quinpirole on patterns of aggressive, motor and schedule-controlled behaviors in mice. Behavioural Pharmacology, 3, 553–565.
  • Tidey, J. W. and Miczek, K. A. (1992b). Morphine withdrawal aggression: modification with D1 and D2 receptor agonists. Psychopharmacology, 108, 177–184.
  • Turan, T., Uysal, C., Asdemir, A., Kılıç, E. (2013). May oxytocin be a trait marker for bipolar disorder? Psychoneuroendocrinology, 38, 2890-2896.
  • Uchida, Y., Dodman, N., Denapoli, J., Aronson, L. (1997). Characterization and treatmant of 20 canine dominance aggression cases. Journal of Veterinary Medical Science, 59(5), 397-399.
  • van der Spek, A. H., Fliers, E., Boelen, A. (2017). The classic pathways of thyroid hormone metabolism. Molecular and Cellular Endocrinology, 458, 29-38.
  • Vara, H., Martinez, B., Santos, A., Colino, A. (2002). Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience, 110(1), 19–28.
  • Wassef, A, Baker, H., Kochan, L. D. (2003). GABA and schizophrenia: a review of basic science and clinical studies. Journal of Clinical Psychopharmacology, 23(6), 601-640.
  • Weisman, O., Zagoory-Sharon, O., Schneiderman, I., Gordon, I., Feldman, R. (2013). Plasma oxytocin distributions in a large cohort of women and men and their gender-specific associations with anxiety, Psychoneuroendocrinology, 38, (5), 694-701.
  • Whybrow, P. C. and Prange, A. J. (1981). A hypothesis of thyroid-catecholaminereceptor interaction: its relevance to affective illness. Archives of General Psychiatry, 38(1), 106–113.
  • Wright, H. F., Mills, D. S., Pollux, P. M. J. (2012). Behavioural and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiology and Behaviour, 105(3), 676-682.
  • Yeon, S. C., Erb, H. N., Houpt, K. A. (1999). A retrospective study of canine house soiling: Diagnosis and treatment, 35, 101-106.
  • Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L. J., Onaka, T. (2009). Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. Journal of Neuroscience, 29, 2259-2271. Yu, C. J., Zhang, S. W., Tai, F. D. (2016). Effects of nucleus accumbens oxytocin and its antagonist on social approach behavior. Behavioral Pharmacology, 27, 672–680.
  • Yu, Q., Teixeira, C. M., Mahadevia, D., Huang, Y., Balsam, D., Mann, J. J., Gingrich, J. A., Ansorge, M. S. (2014). Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Molecular Psychiatry, 19(6), 688-698.
  • Zapata, I., Serpell, J. A., Alvarez, C. E. (2016). Genetic mapping of canine fear and aggression. BMC Genomics, 17, 572.