Biodegradation of 2,4-D and Trifluralin Herbicides by the Bacteria Pseudomonas spp. Using Factorial Design of Experiments

Biodegradation of 2,4-D and Trifluralin Herbicides by the Bacteria Pseudomonas spp. Using Factorial Design of Experiments

Herbicides are commonly used to control unwanted weeds in fields, gardens, airports, parks, and railways. In addition to the benefits of herbicides that are applied to the ground with the help of agricultural tools, they also may be observed to have some damaging effects on the ecosystem. Herbicides may cause death and birth defects by getting mixed into drinking water. Studies show that numerous Pseudomonas spp. species isolated from various environments degrade hydrocarbon compounds. Degradation processes increase when environmental conditions become extreme. My purpose is to treat Pseudomonas ssp. isolated from environmental and clinical specimens. To clean herbicides by bacteria and contribute to cleaning nature economically. This study aims to establish the biodegradation of bacteria in the most effective medium in a statistical 23 multi-factorial testing apparatus created from four environmental and four clinical isolates selected from Pseudomonas aeruginosa, Burkholderia cepacia, Pseudomonas fluorescens, and Pseudomonas putida species. Burkholderia cepacia species was observed to degrade 2,4-D at a rate of 99.7% in the presence of activated carbon in the medium, and Pseudomonas aeruginosa species was found to degrade trifluralin at a rate of 99.3% in the presence of activated carbon in the medium. The presence of activated carbon and succinic acid in the medium increased the efficiency of bacteria in herbicide biodegradation. Consequently, it is believed that the use of Pseudomonades for eliminating toxic residues left by 2,4-D and Trifluralin herbicides may provide some benefits environmentally, clinically, and economically.

___

  • Abbott WS, (1925) A Method of Computing the Effectiveness of an Insecticide. J. Econo. Ento., 18 (2), 265–267. https://doi.org/10.1093/jee/18.2.265a.
  • Balows A, (2113) Manual of clinical microbiology 8th ed.: PR. Murray, EJ. Baron, JH. Jorgenson, MA. Pfaller, RH. Yolken, eds., ASM Press, 2003, pages, 2 vol, 2003 + subject & author indices, ISBN: 1-555810255-4, US$ 189.95. Diagnostic Microbiology and Infectious Disease, 2003, 47(4), 625–626. https://doi.org/10.1016/S0732-8893(03)00160-3.
  • Bauer JD (1982). Clinical Laboratory Methods. CVMosby Company, St-Louis, Toronto, London, pp 34-56. https://doi.org/10.7326/0003-4819-75-1-149_2
  • Bellinaso M, Greer CW, Peralba MD, Henriques JA, Gaylarde CC, (2003) Biodegradation of the herbicide trifluralin by bacteria isolated from soil. FEMS Microbiology Ecology, 43 2, 191-194. https://www.sciencedirect.com/science/article/pii/S0168649602003884
  • Bellinaso, M.deL., Henriques, J. A., Gaylarde, C. C., & Greer, C. W. (2004). Genes are similar to naphthalene dioxygenase genes in trifluralin-degrading bacteria. Pest management science, 60(5), 474–478. https://doi.org/10.1002/ps.835
  • Berry, D. F., Francis, A. J., & Bollag, J. M. (1987). Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiological reviews, 51(1), 43–59. https://doi.org/10.1128/mr.51.1.43-59.1987
  • Bisceglia KJ, Dharia M, Kaur M, Pavlovici FA. Leachability and potential ecotoxic impact of trifluralin-impregnated mulch. Environ Sci Pollut Res Int. 2018;25(3):2972-2980. doi:10.1007/s11356-017-0575-0
  • Bressolle, F., Bromet-Petit, M., & Audran, M. (1996). Validation of liquid chromatographic and gas chromatographic methods. Applications to pharmacokinetics. Journal of chromatography. B, Biomedical applications, 686(1), 3–10. https://doi.org/10.1016/s0378-4347(96)00088-6
  • Brock, Thomas D., (1979). Biology of Microorganisms, 3rd edition. Prentice-Hall, Inc., Englewood Cliffs, NJ., 07632, pp. 235-271. Chalam, A. V., Sasikala, C., Ramana, C. V., Uma, N. R., & Rao, P. R. (1997). Effect of pesticides on the diazotrophic growth and nitrogenase activity of purple nonsulfur bacteria. Bulletin of environmental contamination and toxicology, 58(3), 463–468. https://doi.org/10.1007/s001289900357
  • Claus GW., (1989). Understanding Microbes: A Laboratory Textbook for Microbiology. WH Freeman and Company, New York, pp 547. Coleman NV, Rich DJ, Tang FHM, Vervoort RW, Maggi F. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate. Environ Sci Technol. 2020;54(17):10399-10410. doi:10.1021/acs.est.0c02070
  • Coppella, S. J., DelaCruz, N., Payne, G. F., Pogell, B. M., Speedie, M. K., Karns, J. S., Sybert, E. M., & Connor, M. A. (1990). A genetic engineering approach to toxic waste management: case study for organophosphate waste treatment. Biotechnology progress, 6(1), 76–81. https://doi.org/10.1021/bp00001a012
  • Daugherty, D. D., & Karel, S. F. (1994). Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat. Applied and environmental microbiology, 60(9), 3261–3267. https://doi.org/10.1128/aem.60.9.3261-3267.1994
  • de Oliveira B, Pereira LC, Pazin M, Franco-Bernanrdes MF, Dorta DJ. Do trifluralin and tebuthiuron impair isolated rat liver mitochondria? Pestic Biochem Physiol. 2020;163:175-184. doi:10.1016/j.pestbp.2019.11.012
  • de Oliveira EP, Rovida AFDS, Martins JG, Pileggi SAV, Schemczssen-Graeff Z, Pileggi M. Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system. PLoS One. 2021;16(12):e0257263. Published 2021 Dec 2. doi:10.1371/journal.pone.0257263
  • Dehnert GK, Freitas MB, Sharma PP, Barry TP, Karasov WH. Impacts of subchronic exposure to a commercial 2,4-D herbicide on developmental stages of multiple freshwater fish species. Chemosphere. 2021;263:127638. doi:10.1016/j.chemosphere.2020.127638.
  • Finney DJ., Probit Analysis. Cambridge University Press, 2009, 1Ed, Cambridge. Fisher, P. R., Appleton, J., & Pemberton, J. M. (1978). Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. Journal of bacteriology, 135(3), 798–804. https://doi.org/10.1128/jb.135.3.798-804.1978
  • Fritz, H., Reineke, W., & Schmidt, E., Toxicity of chlorobenzene on Pseudomonas sp. strain RHO1, a chlorobenzene-degrading strain. Biodegradation, 1992, 2(3), 165–170. https://doi.org/10.1007/BF00124490
  • Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M. 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. Environ Sci Pollut Res Int. 2022;29(56):85402-85412. doi:10.1007/s11356-022-21793-8
  • Gomes J, Meek B., Interactions between Occupational and Environmental Factors in Toxicology. Hazard Evaluation and Risk Assessment. Book chapter in General, Applied and Systems Toxicology, 2009, John Wiley&Sons, Ltd.
  • Govan JRW., Pseudomonas Practical Medical Microbiology, 13th Ed, Colle JG, Duguid JP, Fraser AG, Marmion BP, Edinburg, London, Melbourne, and New York, 1989, pp 491-503
  • Hakala JA, Chin YP. Abiotic reduction of pendimethalin and trifluralin in controlled and natural systems containing Fe(II) and dissolved organic matter. J Agric Food Chem. 2010;58(24):12840-12846. doi:10.1021/jf102814b
  • Heydari A, Misaghi IJ., Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils.Plant and Soil, 1998, 202: 109-116
  • Hicks, CR, Turner, KV., Fundamental Concepts in the Design of Experiments. Fifth Edition, Oxford University Press, New York, 1999, pp 595
  • Hoffmann D, Müller RH, Kiesel B, Babel W., Isolation and characterization of an alkalophilic bacterium capable of growing on 2,4-dichloro phenoxy acetic acid and 4-chloro-2-methylphenoxy acetic acid. Acta Biotechnol, 1996, 16:121-131.
  • Ignatowicz K., Selection of sorbent for removing pesticides during water treatment. Journal of hazardous materials, 2009, 169(1-3), 953–957. https://doi.org/10.1016/j.jhazmat.2009.04.061
  • Jacobsen, C. S., & Pedersen, J. C. (1992). Growth and survival of Pseudomonas cepacia DBO1 (pRO101) in soil amended with 2,4-dichlorophenoxyacetic acid. Biodegradation, 1992, 2(4), 245–252. https://doi.org/10.1007/BF00114556.
  • Kerner G., Chemischer Holzschutz und Arbeitshygiene [Chemical timber preservation and industrial safety]. Zeitschrift fur die gesamte Hygiene und ihre Grenzgebiete, 1971, 17(3), 169–175.
  • Koneman EW, Allen SD, Janda WM, Schrecken PC, Winn WC., The Nonfermentative Gram Negative Bacilli. Color Atlas and Textbook of Diagnostic Microbiology 5th Ed, Philadelphia, JB Lippincott, 1997, pp 213-230.
  • Kopytko, M., Chalela, G., & Zauscher, F., Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. Electronic Journal of Biotechnology, 2002, 5, 0-1.
  • Kristiansen,A.K. Evaluation of two selective media for rapid isolation of Pseudomonas strains, Dansk Veterinaertid sscrift,66 (3)(1983).
  • Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol. 2016;42(2):194-208. doi:10.3109/1040841X.2014.91706
  • Leahy, J. G., & Colwell, R. R., Microbial degradation of hydrocarbons in the environment. Microbiological reviews, 1990, 54(3), 305–315. https://doi.org/10.1128/mr.54.3.305-315.1990
  • Levesque, R., SPSS Programming and Data Management. A Guide for SPSS and SAS Users, 2007, Fourth Edition, SPSS Inc., Chicago, III, 540.
  • Li Y, Li C, Li B, Ma Z. Trifluralin residues in soils from main cotton fields of China and associated ecological risk. Chemosphere. 2021;284:131300. doi:10.1016/j.chemosphere.2021.131300
  • Löser, C., Seidel, H., Hoffmann, P., & Zehnsdorf, A., Bioavailability of hydrocarbons during microbial remediation of a sandy soil. Applied Microbiology and Biotechnology, 1999, 51(1), 105–111. https://doi.org/10.1007/s002530051370
  • Ma JY, Quan XC, Xiong WC., [Effects of carbon sources changes on the property and morphology of 2,4-D degraded aerobic sludge granules]. Huan Jing Ke Xue., 2010,31(11):2824-8 Chinese. PMID: 21250472.
  • Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ Sci Pollut Res Int. 2020;27(31):38501-38512. doi:10.1007/s11356-020-10370-6.
  • Nam IH, Chang YS, Hong HB, Lee YE, A novel catabolic activity of Pseudomonas veronii in the biotransformation of pentachlorophenol. Applied microbiology and biotechnology, 2003, 62(2-3), 284–290. https://doi.org/10.1007/s00253-003-1255-1
  • Okay OS, Gaines A., Toxicity of 2,4-D Acid to Phytoplankton. Wat Res., 1996, 30(3): 688-696 Pier, G.B. and Ramphal, R., Pseudomonas aeruginosa. In: Mandell, G.L., Bennett, J.E. and Dolin, R., Eds., Mandell, Douglas and Bennett’s Principles and Practice of Infectious Disease, 6th Edition, Churchill Livingstone, New York, 2005, 2587-2615.
  • Rajmohan, S., Dodd, C. E., & Waites, W. M., (2002) Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. J Appl. Microbio. 93(2), 205–213. https://doi.org/10.1046/j.1365-2672.2002.01674.x
  • Smith, A. R., & Beadle, C. A., Induction of enzymes of 2,4-dichlorophenoxyacetate degradation in Burkholderia cepacia 2a and toxicity of metabolic intermediates. Biodegradation, 2008, 19(5), 669–681. https://doi.org/10.1007/s10532-007-9172-0
  • Wattanaphon, H. T., Kerdsin, A., Thammacharoen, C., Sangvanich, P., & Vangnai, A. S., A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. Journal of applied microbiology, 2008, 105(2), 416–423. https://doi.org/10.1111/j.1365-2672.2008.03755.x
  • Weichenthal S, Moase C, Chan P. A review of pesticide exposure and cancer incidence in the agricultural health study cohort [published correction appears in Cien Saude Colet. 2012 Mar;17(3):809]. Cien Saude Colet. 2012;17(1):255-270. doi:10.1590/s1413-81232012000100028
  • Yadav, J. S., & Reddy, C. A., Mineralization of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and Mixtures of 2,4-D and 2,4,5-Trichlorophenoxyacetic Acid by Phanerochaete chrysosporium. Applied and environmental microbiology, 1993, 59(9), 2904–2908. https://doi.org/10.1128/aem.59.9.2904-2908.1993,
  • Yates F.,The design and analysis of factorial experiments. Technical Communication 35, Harpenden Imperial Bureau of Soil Science., 1937, 1-95.
  • Zablotowicz, R. M., Locke, M. A., Hoagland, R. E., Knight, S. S., Cash, B., (2001) Fluorescent Pseudomonas isolates from Mississippi Delta oxbow lakes: in vitro herbicide biotransformations. Environ. Toxico., , 16(1), 9–19. https://doi.org/10.1002/1522-7278(2001)16:1<9::aid-tox20>3.0.co;2-#