Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review

Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review

Pervaporative desalination is an efficacious method to obtain fresh water from saline water sources. High salt rejection and capacity to cope with high-salt concentration water solutions are important advantages of pervaporation process. To improve pervaporative desalination performance, researches concentrate on novel membrane types. Water stable metal organic frameworks loaded membranes attract substantial attention among novelty membrane applications. This study focuses on pervaporative desalination with MOF loaded polymeric membrane. First of all, the features of MOFs, synthesis methods, usage areas are explained. Then, MOFs loaded mixed matrix membranes, production methods, used MOF types in membranes and applications in pervaporative desalination are examined. At the end of the study, future expectation on the desalination applications of MOF loaded membranes are presented as concluding remarks. Metal organic framework loaded polymeric membranes are seen as promising candidates to obtain drinking water with high separation yield in pervaporative desalination process.

___

  • [1] Yiğit, A. and Atmaca, İ. (2010). Güneş Enerjisi, Alfa-AktüelYayınları, Bursa, Turkey, 1st Edition, 216 p. ISBN: 9789752531673.
  • [2] Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R. and Wang, E.N. (2011). Nanostructured materials for water desalination. Nanotechnology,22:292001.
  • [3] Drioli, E., Stankiewicz, A.I. andMacedonio, F. (2011). Membrane engineering in process intensification an overview. Journal of Membrane Science, 380:1-8.
  • [4] Wang, Q., Li. N., Bolto, B., Hoang, M. andXie, Z. (2016). Desalination by Pervaporation A review. Desalination, 387:46-60.
  • [5] Huang, R.Y.M. (1991). Pervaporation Membrane Separation Process, Elsevier, Amsterdam, The Netherlands, 1st Edition, 549 p. ISBN:9780444882271.
  • [6] Noble, R.D. and Stern, S.A. (1995). Membrane Separations Technology, Principles and Applications, Elsevier, Amsterdam, The Netherlands, 1st Edition, 738 p. ISBN:9780444816337.
  • [7] Xu, Y.M. and Chung, T.S. (2017). High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 531:16-26.
  • [8] Furukawa, H., Cordova, K.E., O'Keeffe, M. andYaghi, O.M. (2013). The chemistry and applications of metalorganic frameworks. Science, 342:1230444.
  • [9] Kırhallı, K.S. (2013). An alternative solution for the global warming and the climate change: metal organic frameworks (MOF); synthesis and CO2 capture, MScThesis. University of Marmara, İstanbul, Turkey. 76 p.
  • [10] Rowsell, J.L.C. andYaghi, O.M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73:3-14.
  • [11] Hekimoglu, G.P. (2016). Preperation of metal organic frameworks (MOFs) and polymeric nanocomposite membranes and evaluation of their gas permeability properties, MSc Thesis.University of Yıldız Technical, İstanbul, Turkey. 84 p
  • [12] Usta, S. (2016). Synthesis, characterization and catalytic application of some new metal-organic frameworks. MScThesis.University of RecepTayyipErdoğan, Rize, Turkey. 81 p.
  • [13] Cejka, J., Bekkum, H., Corma, A. andSchüth, F. (2007). Zeolite membranes – synthesis, characterization and application, Introduction to Zeolite Science and Practice, Edited by Julbe A. Elsevier, Amsterdam, Netherlands. pp. 181-219. ISBN:9780080534794.
  • [14] Perez, E.V. (2009). Mixed-Matrix Membranes Containing Metal-Organic Frameworks for Gas Separations, PhD Thesis. University of Texas. Dallas, Richardson, TX, USA.
  • [15] Saracco, G., Neomagus, H.W.J.P., Versteeg, G.F. andSwaaij, W.P.M. (1999). High-temperature membrane reactors: potential and problems. Chemical Engineering Science, 54: 1997-2017.
  • [16] Basu, S., Cano-Odena, A. andVankelecom, I.F.J. (2010). Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. Journal of Membrane Science, 362: 478-487.
  • [17] Bushell, A.F., Attfield, M.P., Mason, C.R., et al., (2013). Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeoliticimidazolate framework ZIF8. Journal of Membrane Science, 427: 48-62.
  • [18] Cacho-Bailo, F., Seoane, B., Téllez, C. and Coronas, J. (2014). ZIF-8 Continuous Membrane on Porous Polysulfone for Hydrogen Separation. Journal of Membrane Science, 464: 119-126.
  • [19] Dahanayaka, M., Babicheva, R., Chen, Z., Law, A.W.K, Wu, M.S. and Zhou, K. (2020). Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation. Applied Surface Science,503: 144198.
  • [20] Wan, L., Zhou, C., Xu, K., Feng, B. and Huang, A. (2017). Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 252: 207-213.
  • [21] Gong, J., Katz, M.J., Kerton, F. M. (2018). Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 8(55):31618– 31627.
  • [22] O'Neill, L.D., Zhang, H., Bradshaw, D. (2010). Macro-/microporous MOF composite beads. Journal of Materials Chemistry, 20(27):5720–5726.
  • [23] Jr, M.S.D., Moreton, J.C., Benz, L. and Cohen, S.M. (2016). Metal–organic frameworks for membrane-based separations. Nature Reviews Materials, 1: 16078.
  • [24] Kujawski, W. (2000). Application of Pervaporation and Vapor Permeation in Environmental Protection. Polish Journal of Environmental Studies, 9:13-26.
  • [25] Baker R. W. (2000). Membrane separation, Encyclopedia of Separation Science, Edited by Wilson I. D., Adlard E. D., Cooke M., Poole C. F., Academic Press, Germany, pp. 205-209. 2000. ISBN:978-0-12-226770- 3.
  • [26] Ong, Y.K., Shi, G.M., Le, N.L., Tang, Y.P., Zuo, J., Nunes, S.P. and Chung T.S. (2016). Recent membrane development for pervaporation processes. Progress in Polymer Science,57:1-31.
  • [27] Gugliuzza A., Basile A. (2014). Membranes for Clean and Renewable Power Applications, Woodhead Publishing, UK, 1st Edition, 438 p. ISBN:9780857095459.
  • [28] Smitha, B., Suhanya, D., Sridhar, S., Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation a review. Journal of Membrane Science, 241:1-21.
  • [29] Das, S., Banthia, A. K., Adhikari, B. (2007). Improved conversion to ethyl acetate through removal of water of esterification by membrane pervaporation. Indian Journal of Chemical Technology, 14: 552-559.
  • [30] Jee, K.Y., Kim, J.S., Kim, J. and Lee, Y.T. (2015). Effect of hydrophilic Cu3(BTC)2 additives on the performance of PVDF membranes for water flux improvement. Desalination and Water Treatment, 57:1-9.
  • [31] Liang, W., Li, L., Hou, J., Shepherd, N.D., Bennett, T.D., D’Alessandro, D.M. and Chen, V. (2018). Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 9:3508-3516.
  • [32] Liu, X., Demir, N.K., Wu, Z., Li, K. (2015). Highly Water-Stable Zirconium Metal–Organic Framework UiO66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 137: 6999–7002.