Low-Cost Android Based Tele-Monitoring System for Body Temperature Measurement

Low-Cost Android Based Tele-Monitoring System for Body Temperature Measurement

The increasing number of pandemic issues require to pay attention to health conditions and social distance. The explicit sign of COVID-19 is body fever. It is a simple and affordable detection method when compared to other blood tests. However, it is required to be physically close to a visitor to measure body temperature. For this reason, we have designed and developed a low-cost microprocessor measurement system with an infrared non-contact temperature sensor, and a Bluetooth for sending to long distance. Android application has been developed to read and set the alarm function using a smart telephone or a tablet far from the visitors. With the help of these circuit and application designs, body temperatures can be checked from long distance considering the pandemic situations. The printed circuit of the microcontroller, Bluetooth, sensor, and light-dependent resistor (LDR) triggering are manufactured, and the software of the controller and the application are integrated and tested successfully.

___

  • [1] Hanilçi, A., & Gürkan, H. (2019). ECG biometric identification method based on parallel 2-D convolutional neural networks. Journal of Innovative Science and Engineering (JISE), 3(1), 11-22.
  • [2] Verma, S., & Gupta, N. (2012). Microcontroller-based Wireless Heart Rate Telemonitor for Home Care. IOSR J Eng (IOSRJEN), 2(7), 25-31.
  • [3] Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., & Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. International journal of biosensors & bioelectronics, 4(4), 195.
  • [4] Kuzu, M., Taş, O., & Tulum, G. (2017). Uzaktan İzlenebilir Hasta Parametreleri Sistemi. 2. Ulusal Biyomedikal Cihaz Tasarımı ve Üretimi Sempozyumu, 16 Mayıs 2017.
  • [5] Özgören, M., Şakar, M., & Öniz, A. (2010,). Contact/non-contact sensor mesh for body temperature monitoring. In 2010 15th National Biomedical Engineering Meeting (pp. 1-4). IEEE.
  • [6] Chung, Y. T., Yeh, C. Y., Shu, Y. C., Chuang, K. T., Chen, C. C., Kao, H. Y., Ko, W. C., Chen, P. L., & Ko, N. Y. (2020). Continuous temperature monitoring by a wearable device for early detection of febrile events in the SARS-CoV-2 outbreak in Taiwan, 2020. Journal of microbiology, immunology, and infection 53(3), 503–504. https://doi.org/10.1016/j.jmii.2020.04.005
  • [7] Holt, S. G., Yo, J. H., Karschimkus, C., Volpato, F., Christov, S., Smith, E. R., ... & Champion De Crespigny, P. (2020). Monitoring skin temperature at the wrist in hospitalised patients may assist in the detection of infection. Internal Medicine Journal.
  • [8] Gülenç, N. G., & Kartal, M. (2020, November). Noninvasive Measurement of Baby’s Vital Data and Mobile Monitoring-Analysis System Design. In 2020 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • [9] Duman, Ü., & Aydin, E. (2020, September). IOT Based Baby Cradle System with Real Time Data Tracking. In 2020 5th International Conference on Computer Science and Engineering (UBMK) (pp. 274-279). IEEE.
  • [10] Fidan, U., & Güler, N. F. (2007). 4 Kanallı Biyotelemetri Cihazı Tasarımı. Journal of the Faculty of Engineering & Architecture of Gazi University, 22(1).
  • [11] Eriş, Ö., Korkmaz, H., Toker, K., & Buldu, A. (2010). İnternet Üzerinden Hasta Takibi Amaçlı PIC Mikrodenetleyici Tabanlı Kablosuz Pals-Oksimetre Ölçme Sistemi Tasarımı ve LabVIEW Uygulaması. TURKMIA, 10, 16-25.
  • [12] Wijaya, N. H., Fauzi, F. A., Helmy, E. T., Nguyen, P. T., & Atmoko, R. A. (2020). The Design of Heart Rate Detector and Body Temperature Measurement Device Using ATMega16. Journal of Robotics and Control (JRC), 1(2), 40-43.
  • [13] Gupta, S., Talwariya, A., & Singh, P. (2020). Development of Arduino-Based Compact Heart Pulse and Body Temperature Monitoring Embedded System for Better Performance. In Performance Management of Integrated Systems and its Applications in Software Engineering (pp. 189-197). Springer, Singapore.
  • [14] Mert, A., Seçgin, Ö., & Akan, A. Sürekli Vucut Sıcaklıgı Ölçümü Için Biyotelemetri Cihaz Tasarımı Tıp Teknolojileri Ulusal Kongresi, TIPTEKNO’14 (pp.312-315). Nevşehir, Turkey
  • [15] Kim, Y., Lee, S., & Lee, S. (2015). Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems. IEEE journal of biomedical and health informatics, 20(1), 222-230.
  • [16] Hasan, M. W. (2021). Covid-19 fever symptom detection based on IoT cloud. International Journal of Electrical & Computer Engineering, 11(2), 1823-1829.
  • [17] Akleylek, S, Kılıç, E, Söylemez, B, Aruk, E, Aksaç, C. (2020). Nesnelerin İnterneti Tabanlı Sağlık İzleme Sistemleri Üzerine Bir Çalışma. Mühendislik Bilimleri ve Tasarım Dergisi, Special Issue: International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2020), 80-89.
  • [18] Karthi, P., Jayakumar, M. (2020). Smart Integrating Digital Contact Tracing with IoMT for COVID-19 using RFID and GPS. Journal of Xi’an Shiyou University, Natural Science Edition, 16(12), 38-43.
  • [19] Costin, H., & Rotariu, C. (2018). Vital Signs Telemonitoring by Using Smart Body Area Networks, Mobile Devices and Advanced Signal Processing. In Advances in Biomedical Informatics (pp. 219-246). Springer, Cham.
  • [20] Melexis MLX 90615 temperature sensor datasheet, https://www.melexis.com/-/media/files/documents/datasheets/mlx90615-datasheet-melexis.pdf, 30.11.2020.
  • [21] PIC12LF1822 microcontroller datasheet, http://ww1.microchip.com/downloads/en/devicedoc/40001413e.pdf, 30.11. 2020.