Gelişmiş Alan Oranının Aşağı Wortley Nehrinin Sel Riskine Olan Etkisinin Değerlendirilmesi

Havzalardaki nüfus ve değerli yatırımlar gün be gün artmaktadır buyüzden şehirlerdeki nehirler ciddi bir risk oluşturmaktadır.  Bu makale İngiltere, Leeds de bulunan aşağı Wortley nehrini besleyen, alt havzalardaki geçirimsiz yüzey oranlarının, çıkış debilerine olan etkisini araştırmaktadır.  Aşağı Wortley, havzanın kentleşmiş ve debi kayıt merkezi bulunmayan kısmındadır. Nehir taşkın senaryoları hidrolojik ve hidrolik modellerin birleştirilmesiyle oluşturulmuştur. Sel olayları Revitalised Flood Hydrograph (ReFH) yağış-akış modeli kullanılarak dizayn edilmiştir. Arazi kullanım değişikliklerinin etkileri farklı değerlerdeki, sel tahmin el kitabındaki (FEH) havza tanımlayıcılarından biri olan, kentsel ve banliyö örtüsünün kapsamı (URBEXT) parametresinin farklı değerleri uygulanarak çalışılmıştır. Ayrıca, sel genişlikleri, Flood Modeler Suite ile TUFLOW hidrodinamik modelleri aracılığı ile elde edilmiştir. Bu simülasyon çıktıları maksimum su derinliği değerlerine sahip olasılıksal sel alanları haritalarıdır. Böylece, alt havzalardaki farklı yüzdelerdeki geçirimsiz yüzeylerin, çıkış debilerine ve aşağı havzadaki sel felaketine olan etkileri gözlemlenebilir.  Bu sonuçlar, şehir konseylerinin taşkın dayanıklılığı yaklaşımlarını geliştirmesinde kullanılabilir.

Assessment of The Impact of The Ratio of The Developed Area on The Fluvial Flood Risk of Lower Wortley Beck

Population and valuable investments have been increasing day by day in basins. Thus, urban rives create a serious potential risk in the cities. This paper investigates the impacts of the percentages of the impermeable surfaces on the discharges from sub-catchments of the Lower Wortley Beck, Leeds, UK. Lower Wortley is in urbanized and ungauged part of the basin. The fluvial flood events were created by combining hydrological and hydrodynamic models for various events. Flood events were designed by using Revitalised Flood Hydrograph (ReFH) rainfall-runoff models. The impact of land use changes was examined by applying various Extent of urban and suburban cover (URBEXT) parameter of the Flood Estimation Handbook (FEH) catchment descriptor. Also, flood extents were simulated by linking Flood Modeler Suite with TUFLOW, hydrodynamic models. The outcomes of these simulations are probabilistic inundation maps with maximum water depth values. Thus, the impact of the different percentages of the impermeable surfaces of the sub-catchments on the discharge and fluvial flood risk at the downstream can be observed. These outcomes can be used to enrich the flood resilience approaches by city councils.

___

  • Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., Tignor, M., Midgley, P.M., 2012. IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  • Jongman, B., Kreibich, H., Apel, H., Barredo, J.I., Bates, P.D., Feyen, L., Gericke, A., Neal, J., Aerts, J.C.J.H., and Ward, P.J., 2012. Comparative flood damage model assessment: towards a European approach. Nat. Hazards Earth Syst. Sci, 12, pp. 3733-3752.
  • Tanoue, M., Hirabayashi, Y., Ikeuchi, H., 2016. Global-scale river flood vulnerability in the last 50 years. Scientific reports, 6.
  • Bayliss, A.C., Black, K.B., Fava-Verde, A., Kjeldsen, T. R., 2006. "URBEXT2000-A new FEH catchment descriptor. Calculation, dissemination and application.", pp. 50.
  • Putro, B., 2013. Links between environmental change and its impacts on river flow regime and quality in urbanising catchments (Doctoral dissertation, Royal Holloway, University of London).
  • Old, G., Thompson, J., Ramsbottom, D., Nottage, A., Packman, J., Thorne, C., Booker, D., Fisher, J., Durell, S., Acreman, M., 2008. Methods to Assess, Model and Map the Environmental Consequences of Flooding. Literature review. The Environment Agency.
  • Sertyesilisik, P., 2017. Assessing Urban Flood Risk with Probabilistic Approaches, PhD Thesis, University of Leeds, UK.
  • Jepps, S., 2011. Flood Modelling Study – Wortley Beck, Leeds. 42. [online]. Available from: http://plandocs.leeds.gov.uk/WAM/doc/BackGround%20Papers420149.pdf?extension =.pdf&id=420149&location=VOLUME3&contentType=application/octetstream&pageCount=1.
  • Environment Agency, Risk of flooding from Surface Water – Wortley Beck & Farnley Reservoir- RFI no: 29864 – Date 14/07/2014 © Crown Copyright and database right 2013. Ordnance Survey licence number 100024198.
  • Niedda, M., Greppi, M, 2010. Watershed Runoffand River Flood Modeling in Land Use Planning. Journal of Agricultural Engineering.
  • Guo, Y., Adams, B. J., 1998. Hydrologic analysis of urban catchments with event-based probabilistic models: 1. Runoff volume. Water Resources Research, 34(12), pp. 3421-3431.
  • Faulkner, D., Wass, P., 2005. Flood estimation by continuous simulation in the Don catchment, South Yorkshire, UK. Water and Environment Journal, 19(2), pp.78-84.
  • Falter, D., Schröter, K., Dung, N.V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., Merz, B., 2015. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. Journal of Hydrology, 524, p. 182-193. In R.J.
  • Romanowicz, R.J. and Kiczko, A, 2016. An event simulation approach to the assessment of flood level frequencies: risk maps for the Warsaw reach of the River Vistula. Hydrological Processes, 30(14), 2016, pp.2451-2462.
  • Evans, E.P., Wicks, J.M., Whitlow, C.D., Ramsbottom, D.M., 2007. The evolution of a river modelling system. In Proceedings of the Institution of Civil Engineers-Water Management (Vol. 160, No. 1, pp. 3-13). Thomas Telford Ltd.
  • Liang, Q., Du, G., Hall, J.W., Borthwick, A.G., 2008. Flood inundation modeling with an adaptive quadtree grid shallow water equation solver. Journal of Hydraulic Engineering, 134(11), pp.1603-1610.
  • Delis, A.I., Kampanis, N.A., 2009. Numerical flood simulation by depth averaged free surface flow models. Environmental Systems- Encyclopedia of Life Support Systems (EOLSS).
  • BMT WMB, TUFLOW USER Manual – Build 2010-10-AA. 2010.
  • Zhang, H., 2015. Urban food simulation by coupling a hydrodynamic model with a hydrological model.
  • Kjeldsen, T. R., 2006. The revitalised FSR/FEH rainfall-runoff method. FEH Supplementary Report No. 1, Centre for Ecology & Hydrology, Wallingford, UK.
  • Kjeldsen, T.R., Stewart, E.J., Packman, J.C., Folwell, S.S., Bayliss, A.C, 2005. Revitalisation of the FSR/FEH rainfall-runoff method. Final Report to DEFRA/EA, CEH, Wallingford.
  • Kjeldsen, T.R., 2007. The revitalised FSR/FEH rainfall-runoff method. FEH Supplementary Report No. 1, Centre for Ecology & Hydrology, Wallingford, UK.
  • CEH, The Flood Estimation Handbook CD-ROM 3. Centre for Ecology & Hydrology, Wallingford, oxon, UK. (2009). (15:58:20 GMT on Thu 25-Sep-2014).
  • Houghton-Carr, H., 1999. “Flood Estimation Handbook: Restatement and Application of the Flood Studies Report Rainfall-runoff Method."
  • Bayliss, A., Catchment Descriptors: Flood Estimation Handbook. Institute of Hydrology, 2000.
  • Kjeldsen, T.R., 2009. Modelling the impact of urbanisation on flood runoff volume. In Proceedings of the Institution of Civil Engineers-Water Management (Vol. 162, No. 5, pp. 329-336). Thomas Telford Ltd.
  • Miller, J.D., Kim, H., Kjeldsen, T.R., Packman, J., Grebby, S., Dearden, R., 2014. "Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover." Journal of Hydrology 515 : 59-70.
  • Kumar, N., Tischbein, B., Kusche, J., Beg, M.K., Bogardi, J.J., 2017. Impact of land-use change on the water resources of the Upper Kharun Catchment, Chhattisgarh, India. Regional Environmental Change, pp.1-13.
  • WMO and GWP, Urban Flood Risk Management – A Tool for Integrated Flood Management Version 1.0. APFM Technical Document No.11, Flood Management Tools Series, World Meteorological Organisation, Geneva, 2008.