Cd44 Targeted Plga Nano-Medicine For Cancer Chemotherapy- A Comprehensive Review

Cd44 Targeted Plga Nano-Medicine For Cancer Chemotherapy- A Comprehensive Review

In order to deliver therapeutic agents to tumour tissues more specifically, the scientific community has focused a lot of attention recently on unravelling the mystery of cluster of differentiation-44 (CD44). Additionally, drug delivery researchers are interested in using nanomedicines to target this receptor because of its over-expression in a variety of solid tumors. Conventional nanomedicines based on biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. We have thoroughly covered the most recent developments in the design and synthesis of CD44-targeted PLGA nanomedicines in this review, which are being used to enhance tumor-targeted drug delivery. Additionally, we have talked about employing PLGA-based nanomedicines to co-target CD44 with additional targeting molecules such folic acid, human epidermal growth factor 2 (HER2), and monoclonal antibodies. Recent research on poly (lactic-co-glycolic acid) encapsulated platinum nanoparticles for the treatment of cancer was also covered in this review. We talk about the role that newly created nanomedicines can play in enhancing the efficacy and PK of existing therapy regimens. We offer insight into the development of more potent therapeutic regimens to enhance the clinical outcomes of cancer treatments by explaining the state-of-the-art of nanomedicine and analyzing their clinical benefits and problems.

___

  • Rumpold H, Winder T. Development of chemotherapeutics in oncology: is there anything new?. memo-Magazine of European Medical Oncology. 2017 Sep;10:119-20.
  • Saneja A, Dhar Dubey R, Alam N, Khare V, N Gupta P. Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Current cancer drug targets. 2014 Jun 1;14(5):419-33.
  • Saneja A, Kumar R, Arora D, Kumar S, Panda AK, Jaglan S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discovery Today. 2018 May 1;23(5):1115-25.
  • Saneja A, Nayak D, Srinivas M, Kumar A, Khare V, Katoch A, Goswami A, Vishwakarma RA, Sawant SD, Gupta PN. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. European Journal of Pharmaceutical Sciences. 2017 Jan 15;97:79-91.
  • Arora D, Jaglan S. Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: A review of recent research developments. Trends in Food Science & Technology. 2016 Aug 1;54:114-26.
  • Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells. Bioconjugate chemistry. 2015 Jul 15;26(7):1307-13.
  • Bawa KK, Oh JK. Stimulus-responsive degradable polylactide-based block copolymer nanoassemblies for controlled/enhanced drug delivery. Molecular pharmaceutics. 2017 Aug 7;14(8):2460-74.
  • Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules. 2017 Jun 12;18(6):1677-96.
  • Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. European Journal of Pharmaceutical Sciences. 2018 Aug 30;121:47-58.
  • Dubey RD, Saneja A, Qayum A, Singh A, Mahajan G, Chashoo G, Kumar A, Andotra SS, Singh SK, Singh G, Koul S. PLGA nanoparticles augmented the anticancer potential of pentacyclic triterpenediol in vivo in mice. RSC advances. 2016;6(78):74586-97.
  • Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. International journal of nanomedicine. 2015 Feb 2:1001-18.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications. 2020 Nov 23:61-91.
  • Ojha T, Pathak V, Shi Y, Hennink WE, Moonen CT, Storm G, Kiessling F, Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Advanced drug delivery reviews. 2017 Sep 15;119:44-60.
  • Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology letters. 2017 Oct 1;190:64-83.
  • Ramzy L, Nasr M, Metwally AA, Awad GA. Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. European journal of pharmaceutical sciences. 2017 Jun 15;104:273-92.
  • Ghosh SC, Neslihan Alpay S, Klostergaard J. CD44: a validated target for improved delivery of cancer therapeutics. Expert opinion on therapeutic targets. 2012 Jul 1;16(7):635-50.
  • Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. Journal of drug targeting. 2015 Sep 14;23(7-8):605-18.
  • Cerqueira BB, Lasham A, Shelling AN, Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Materials Science and Engineering: C. 2017 Jul 1;76:593-600.
  • Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale. 2015;7(18):8607-18.
  • Huang J, Zhang H, Yu Y, Chen Y, Wang D, Zhang G, Zhou G, Liu J, Sun Z, Sun D, Lu Y. Biodegradable self-assembled nanoparticles of poly (D, L-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials. 2014 Jan 1;35(1):550-66.
  • Bhatnagar P, Pant AB, Shukla Y, Panda A, Gupta KC. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich’s Ascites Carcinoma. European Journal of Pharmaceutics and Biopharmaceutics. 2016 Aug 1;105:176-92.
  • Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. Journal of controlled release. 2015 Dec 28;220:275-86.
  • Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations of poly (lactic acid) and its copolymers in clinical use. Advanced drug delivery reviews. 2016 Dec 15;107:213-27.
  • Jin YJ, Ubonvan T, Kim DD. Hyaluronic acid in drug delivery systems. Journal of Pharmaceutical Investigation. 2010;40(spc):33-43.
  • Iida J, Clancy R, Dorchak J, Somiari RI, Somiari S, Cutler ML, Mural RJ, Shriver CD. DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration. PLoS One. 2014 Feb 19;9(2):e88712.
  • Heider KH, Sproll M, Susani S, Patzelt E, Beaumier P, Ostermann E, Ahorn H, Adolf GR. Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunology, Immunotherapy. 1996 Dec;43:245-53.
  • Hiscox S, Baruah B, Smith C, Bellerby R, Goddard L, Jordan N, Poghosyan Z, Nicholson RI, Barrett-Lee P, Gee J. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC cancer. 2012 Dec;12(1):1-4.
  • Hirata K, Suzuki H, Imaeda H, Matsuzaki J, Tsugawa H, Nagano O, Asakura K, Saya H, Hibi T. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. British journal of cancer. 2013 Jul;109(2):379-86.
  • Lee H, Ahn CH, Park TG. Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromolecular Bioscience. 2009 Apr 8;9(4):336-42.
  • Lee JY, Chung SJ, Cho HJ, Kim DD. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2015 Aug 1;94:532-41.
  • Lee JY, Termsarasab U, Park JH, Lee SY, Ko SH, Shim JS, Chung SJ, Cho HJ, Kim DD. Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. Journal of Controlled Release. 2016 Aug 28;236:38-46.
  • Lesley J, Hascall VC, Tammi M, Hyman R. Hyaluronan binding by cell surface CD44. Journal of Biological Chemistry. 2000 Sep 1;275(35):26967-75.
  • Li L, Heldin CH, Heldin P. Inhibition of platelet-derived growth factor-BB-induced receptor activation and fibroblast migration by hyaluronan activation of CD44. Journal of Biological Chemistry. 2006 Sep 8;281(36):26512-9.
  • Katoh S, Goi T, Naruse T, Ueda Y, Kurebayashi H, Nakazawa T, Kimura Y, Hirono Y, Yamaguchi A. Cancer stem cell marker in circulating tumor cells: expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer. Anticancer Research. 2015 Jan 1;35(1):239-44.
  • Khare V, Alam N, Saneja A, Dubey RD, Gupta PN. Targeted drug delivery systems for pancreatic cancer. Journal of biomedical nanotechnology. 2014 Dec 1;10(12):3462-82.
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release. 2012 Jul 20;161(2):505-22.
  • Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V. Opposing effects of high-and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell death & disease. 2013 Oct;4(10):e819-.
  • Khare V, Alam N, Saneja A, Dubey RD, Gupta PN. Targeted drug delivery systems for pancreatic cancer. Journal of biomedical nanotechnology. 2014 Dec 1;10(12):3462-82.
  • Liu J, Jiang G. CD44 and hematologic malignancies. Cellular & molecular immunology. 2006 Oct 1;3(5):359-65.
  • Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Molecular Cancer Research. 2011 Dec 1;9(12):1573-86.
  • Matzke A, Herrlich P, Ponta H, Orian-Rousseau V. A five-amino-acid peptide blocks Met-and Ron-dependent cell migration. Cancer research. 2005 Jul 15;65(14):6105-10.
  • Mir M, Ahmed N, ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces. 2017 Nov 1;159:217-31.
  • Misra S, Hascall VC, De Giovanni C, Markwald RR, Ghatak S. Delivery of CD44 shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+ MICE. Journal of Biological Chemistry. 2009 May 1;284(18):12432-46.
  • Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in immunology. 2015 May 6;6:201.
  • Misra S, Toole BP, Ghatak S. Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. Journal of Biological Chemistry. 2006 Nov 17;281(46):34936-41.
  • Mokhtarzadeh A, Tabarzad M, Ranjbari J, de la Guardia M, Hejazi M, Ramezani M. Aptamers as smart ligands for nano-carriers targeting. TrAC Trends in Analytical Chemistry. 2016 Sep 1;82:316-27.
  • Althoff K, Lindner S, Odersky A, Mestdagh P, Beckers A, Karczewski S, Molenaar JJ, Bohrer A, Knauer S, Speleman F, Epple M. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating S urvivin. International journal of cancer. 2015 Mar 15;136(6):1308-20.
  • Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids and Surfaces B: Biointerfaces. 2016 Jul 1;143:532-46.
  • Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Critical reviews in clinical laboratory sciences. 2002 Jan 1;39(6):527-79.
  • Nascimento TL, Hillaireau H, Vergnaud J, Fattal E. Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine. 2016 Jul;11(14):1865-87.
  • Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene therapy. 2006 Mar;13(6):464-77.
  • Pradhan R, Ramasamy T, Choi JY, Kim JH, Poudel BK, Tak JW, Nukolova N, Choi HG, Yong CS, Kim JO. Hyaluronic acid-decorated poly (lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin. Carbohydrate polymers. 2015 Jun 5;123:313-23.
  • Shi S, Zhou M, Li X, Hu M, Li C, Li M, Sheng F, Li Z, Wu G, Luo M, Cui H. Synergistic active targeting of dually integrin αvβ3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies. Journal of Controlled Release. 2016 Aug 10;235:1-3.
  • Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Advances in cancer research. 2014 Jan 1;123:277-317.
  • Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJ. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. The American journal of pathology. 2004 Oct 1;165(4):1087-95.
  • Tijink BM, Buter J, De Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, Van Dongen GA. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clinical Cancer Research. 2006 Oct 15;12(20):6064-72.
  • Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer. 2004 Jul 1;4(7):528-39.
  • Toole BP, Ghatak S, Misra S. Hyaluronan oligosaccharides as a potential anticancer therapeutic. Current pharmaceutical biotechnology. 2008 Aug 1;9(4):249-52.
  • Toole BP, Slomiany MG. Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resistance Updates. 2008 Jun 1;11(3):110-21.
  • Song L, Pan Z, Zhang H, Li Y, Zhang Y, Lin J, Su G, Ye S, Xie L, Li Y, Hou Z. Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. Journal of Materials Chemistry B. 2017;5(33):6835-46.
  • Tran TH, Nguyen TD, Van Nguyen H, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Targeted and controlled drug delivery system loading artersunate for effective chemotherapy on CD44 overexpressing cancer cells. Archives of pharmacal research. 2016 May;39:687-94.
  • Urakawa H, Nishida Y, Knudson W, Knudson CB, Arai E, Kozawa E, Futamura N, Wasa J, Ishiguro N. Therapeutic potential of hyaluronan oligosaccharides for bone metastasis of breast cancer. Journal of Orthopaedic Research. 2012 Apr;30(4):662-72.
  • Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2016 Feb 1;12(2):411-20.
  • Wang Y, Huang JW, Castella M, Huntsman DG, Taniguchi T. p53 is positively regulated by miR-542-3p. Cancer research. 2014 Jun 15;74(12):3218-27.
  • Wu J, Deng C, Meng F, Zhang J, Sun H, Zhong Z. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release. 2017 Aug 10;259:76-82.
  • Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z. Robust, responsive, and targeted PLGA anticancer nanomedicines by combination of reductively cleavable surfactant and covalent hyaluronic acid coating. ACS Applied Materials & Interfaces. 2017 Feb 1;9(4):3985-94.
  • Wu J, Zhang J, Deng C, Meng F, Zhong Z. Vitamin E-Oligo (methyl diglycol l-glutamate) as a biocompatible and functional surfactant for facile preparation of active tumor-targeting PLGA nanoparticles. Biomacromolecules. 2016 Jul 11;17(7):2367-74.
  • Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale. 2015;7(42):17745-55.
  • Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan–CD44 binding. PLoS computational biology. 2017 Jul 17;13(7):e1005663.
  • Wang S, Shao M, Zhong Z, Wang A, Cao J, Lu Y, Wang Y, Zhang J. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Delivery. 2017 Jan 1;24(1):1791-800.
  • Qiao S, Zhao Y, Geng S, Li Y, Hou X, Liu Y, Lin FH, Yao L, Tian W. A novel double-targeted nondrug delivery system for targeting cancer stem cells. International Journal of Nanomedicine. 2016 Dec 8:6667-78.
  • Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release. 1998 Apr 30;53(1-3):93-103.
  • Sahin IH, Klostergaard J. CD44 as a drug delivery target in human cancers: where are we now?. Expert Opinion on Therapeutic Targets. 2015 Dec 2;19(12):1587-91.
  • Yadav AK, Agarwal A, Rai G, Mishra P, Jain S, Mishra AK, Agrawal H, Agrawal GP. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug delivery. 2010 Nov 1;17(8):561-72.
  • Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid–anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine: Nanotechnology, Biology and Medicine. 2007 Dec 1;3(4):246-57.
  • Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?. Nature Reviews Cancer. 2011 Apr;11(4):254-67.
  • Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydrate polymers. 2015 Nov 20;133:391-9.
  • Harrington KJ, Lewanski CR, Stewart JS. Liposomes as vehicles for targeted therapy of cancer. Part 1: preclinical development. Clinical Oncology. 2000 Feb 1;12(1):2-15.
  • Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™(liposomal doxorubicin citrate). The Breast. 2001 Jun 1;10:1-7.
  • Rubrichi S, Quaglini S. Summary of Product Characteristics content extraction for a safe drugs usage. Journal of Biomedical Informatics. 2012 Apr 1;45(2):231-9.
  • Bedikian AY, Vardeleon A, Smith T, Campbell S, Namdari R. Pharmacokinetics and urinary excretion of vincristine sulfate liposomes injection in metastatic melanoma patients. The Journal of Clinical Pharmacology. 2006 Jul;46(7):727-37.
  • Pillai G. Nanotechnology toward treating cancer: A comprehensive review. Applications of targeted nano drugs and delivery systems. 2019 Jan 1:221-56.
  • Brunetti C, Anelli L, Zagaria A, Specchia G, Albano F. CPX-351 in acute myeloid leukemia: can a new formulation maximize the efficacy of old compounds?. Expert Review of Hematology. 2017 Oct 3;10(10):853-62.
  • Ferreira BA. Assessment of the Effect of Hepatic Impairment on Pharmacokinetics (Master›s thesis).
Journal of Immunology and Clinical Microbiology-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Erkan YULA