The efficacy of volumetric computed tomography histogram analysis in adrenal masses

The efficacy of volumetric computed tomography histogram analysis in adrenal masses

Aims: The rate of adrenal mass detection has increased due to the development of imaging modalities. It is vital to differentiate benign adrenal adenomas from other adrenal masses in order to establish whether an active management strategy is essential. Volumetric CT histogram analysis calculates the percentage of covered pixels in the negative attenuation region. The goal of this research was to evaluate the diagnostic utility of volume histogram analysis for adrenal tumors confirmed histopathologically as well as the ideal slice thickness for CT histogram analysis to differentiate between benign and malignant lesions with a density greater than 10 Hounsfield units (HU). Methods: The research analyzed the CT images of 127 individuals with 136 adrenal masses that were verified histopathologically after resection (57 lipid-poor adenomas, 21 pheochromocytomas, 47 metastases, and 11 adrenocortical carcinomas). For imaging, a 40-row MDCT device (Siemens Medical Solution, Erlanger, Germany) was utilized. 1 mm and 5 mm unenhanced CT images were obtained. Two separate radiologists manually assessed the Hounsfield units (HU) of the masses. The 5th to 95th percentiles of HU values, as well as the minimum, mean, and maximum values, skewness, kurtosis, and variance, were calculated. Interobserver agreement was determined by means of the interclass correlation coefficient (ICC). Results: The HU parameters for the malignant group were all higher than those of the benign group, and the difference in the 5 mm slice thickness was more significant than the 1 mm slice thickness. The difference between HUmin (P=0.007), HUmean and HUmedian (P <0.001), 5th to 50th (P <0.001), 75th (P=0.004), 90th (P=0.016), and 95th (P=0.049) percentiles was statistically significant. The malignant group had higher skewness and kurtosis than the benign group, while the benign group had higher variance. Statistically, the disparity between the variances was significant (P=0.046). The area under the curve (AUC) of the 25th percentile of the HU value was the highest (AUC=0.932; cut-off value=15; sensitivity=90.0%; specificity=85.7%). Conclusion: Noninvasive volumetric CT histogram analysis can detect malignant adrenal masses from benign tumors before an operation. Histogram analysis benefits from thicker slices. HUmin, HUmean, HUmedian, percentile values, and variance can identify adrenal masses.

___

  • Bovio S, Cataldi A, Reimondo G, et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Invest. 2006;29(4):298-302.
  • Čtvrtlík F, Koranda P, Schovánek J, Škarda J, Hartmann I, Tüdös Z. Current diagnostic imaging of pheochromocytomas and implications for therapeutic strategy. Exp Ther Med. 2018;15(4):3151-3160.
  • Ctvrtlík F, Herman M, Student V, Tichá V, Minarík J. Differential diagnosis of incidentally detected adrenal masses revealed on routine abdominal CT. Eur J Radiol. 2009;69(2):243-252.
  • Boland GW, Lee MJ, Gazelle GS, Halpern EF, McNicholas MM, Mueller PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol. 1998;171(1):201-204.
  • Korobkin M, Brodeur FJ, Yutzy GG, et al. Differentiation of adrenal adenomas from nonadenomas using CT attenuation values. AJR Am J Roentgenol. 1996;166(3):531-536.
  • Boland GW, Blake MA, Hahn PF, Mayo-Smith WW. Incidental adrenal lesions:principles, techniques, and algorithms for imaging characterization. Radiology. 2008;249(3):756-775.
  • Peña CS, Boland GW, Hahn PF, Lee MJ, Mueller PR. Characterization of indeterminate (lipid-poor) adrenal masses:use of washout characteristics at contrast-enhanced CT. Radiology. 2000;217(3):798-802.
  • Park BK, Kim CK, Kim B, Lee JH. Comparison of delayed enhanced CT and chemical shift MR for evaluating hyperattenuating incidental adrenal masses. Radiology. 2007;243(3):760-765.
  • Bae KT, Fuangtharnthip P, Prasad SR, Joe BN, Heiken JP. Adrenal masses: CT characterization with histogram analysis method. Radiology. 2003;228(3):735-742.
  • Fassnacht M, Arlt W, Bancos I, et al. Management of adrenal incidentalomas:european society of endocrinology clinical practice guideline in collaboration with the european network for the study of adrenal tumors. Eur J Endocrinol. 2016;175(2):1-34.
  • Zhu Q, Zou J, Ye J, Zhu W, Wu J, Chen W. Comparative study of conventional ROI-based and volumetric histogram analysis derived from CT enhancement in differentiating malignant and benign renal tumors. Br J Radiol. 2022;95(1135):20210801.
  • Flechsig P, Kratochwil C, Schwartz LH, et al. Quantitative volumetric CT-histogram analysis in N-staging of 18F-FDG-equivocal patients with lung cancer. J Nucl Med. 2014;55(4):559-564.
  • Lu J, Hu D, Tang H, et al. Assessment of tumor heterogeneity: differentiation of periampullary neoplasms based on CT whole-lesion histogram analysis. Eur J Radiol. 2019;115:1-9.
  • Tanabe M, Kunihiro Y, Higashi M, et al. Pancreatic Steatosis Evaluated by Automated Volumetric CT Fat Fraction of the Pancreas:Association with Severity in COVID-19 Pneumonia. Tomography. 2022;8(6):2806-2814.
  • Lee JW, Kim EY, Kim DJ, et al. The diagnostic ability of 18F-FDG PET/CT for mediastinal lymph node staging using 18F-FDG uptake and volumetric CT histogram analysis in non-small cell lung cancer. Eur Radiol. 2016;26(12):4515-4523.
  • Ho LM, Paulson EK, Brady MJ, Wong TZ, Schindera ST. Lipid-poor adenomas on unenhanced CT:does histogram analysis increase sensitivity compared with a mean attenuation threshold? AJR Am J Roentgenol. 2008;191(1):234-238.
  • Jhaveri KS, Wong F, Ghai S, Haider MA. Comparison of CT histogram analysis and chemical shift MRI in the characterization of indeterminate adrenal nodules. AJR Am J Roentgenol. 2006;187(5):1303-1308.
  • Halefoglu AM, Yasar A, Bas N, Ozel A, Erturk SM, Basak M. Comparison of computed tomography histogram analysis and chemical-shift magnetic resonance imaging for adrenal mass characterization. Acta Radiol. 2009;50(9):1071-1079.
  • Lin MF, Chang-Sen LQ, Heiken JP, Pilgram TK, Bae KT. Histogram analysis for characterization of indeterminate adrenal nodules on noncontrast CT. Abdom Imaging. 2015;40(6):1666-1674.
  • Szász P, Kučera P, Čtvrtlík F, Langová K, Hartmann I, Tüdös Z. Diagnostic value of unenhanced CT attenuation and CT histogram analysis in differential diagnosis of adrenal tumors. Medicina (Kaunas). 2020;56(11):597.
  • Sprawls P. AAPM tutorial. CT image detail and noise. Radiographics. 1992;12(5):1041-1046.
  • Tongdee R, Tongdee T, Goo J, Bae K, Comparison of CT histogram analysis and mean attenuation methods in characterization of adrenal masses: a phantom study. Radiological Society of North America. 2004 Scientific Assembly and Annual Meeting, November 28 - December 3,. 2004 ,Chicago IL. http://archive.rsna.org/2004/4412135.html Accessed April 2,. 2023.
  • Halefoglu AM, Bas N, Yasar A, Basak M. Differentiation of adrenal adenomas from nonadenomas using CT histogram analysis method:a prospective study. Eur J Radiol. 2010;73(3):643-651.
  • Remer EM, Motta-Ramirez GA, Shepardson LB, Hamrahian AH, Herts BR. CT histogram analysis in pathologically proven adrenal masses. AJR Am J Roentgenol. 2006;187(1):191-196.
  • Tüdös Z, Kučera P, Szász P, et al. Influence of slice thickness on result of CT histogram analysis in indeterminate adrenal masses. Abdom Radiol (NY). 2019;44(4):1461-1469.
  • Clark TJ, Hsu LD, Hippe D, Cowan S, Carnell J, Wang CL. Evaluation of diagnostic accuracy: multidetector CT image noise correction improves specificity of a Gaussian model-based algorithm used for characterization of incidental adrenal nodules. Abdom Radiol (NY). 2019;44(3):1033-1043.
  • Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Pheochromocytoma as a frequent false-positive in adrenal washout CT: a systematic review and meta-analysis. Eur Radiol. 2018;28(3):1027-1036.
  • Choi YA, Kim CK, Park BK, Kim B. Evaluation of adrenal metastases from renal cell carcinoma and hepatocellular carcinoma:use of delayed contrast-enhanced CT. Radiology. 2013;266(2):514-520.
  • Canu L, Van Hemert JAW, Kerstens MN, et al. CT characteristics of pheochromocytoma: relevance for the evaluation of adrenal incidentaloma. J Clin Endocrinol Metab. 2019;104(2):312-318.
Journal of Health Sciences and Medicine-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2018
  • Yayıncı: MediHealth Academy Yayıncılık
Sayıdaki Diğer Makaleler

Analysis of the relationship between clinical features, treatment options and recurrence of patients diagnosed with anogenital warts

Elif DEMİRCİ SAADET, Halil Gürdal İNAL, Bedreddin SEÇKİN, Süleyman AKARSU

The effect of age on the severity of dry mouth occurring in patients receiving high dose radioactive iodine treatment

Veysel ERATİLLA, İhsan KAPLAN

A scientometric analysis of the relationship between functional dyspepsia and anxiety

Duygu TUTAN, Ayşe ERDOĞAN KAYA

Retrospective evaluation of the prevalence of endodontic-periodontal lesions on panoramic images in the latest classification of periodontal and peri-implant diseases

Hüseyin Gürkan GÜNEÇ, Tuğçe PAKSOY, Caner ATALAY, Kader AYDIN

The comparison of success status and complications in peyronie disease patients: penile plication versus plaque incision and grating techniques

Çağrı DOĞAN, Murat AKGÜL, Cenk Murat YAZICI, Serkan ŞERAMET, Hulusi DAYISOYLU, Erdem Can TOPKAÇ

Relation of parathyroid hormone with malnutrition in peritoneal dialysis patients

Emel TALI, Rumeyza KAZANCIOGLU

The efficacy of volumetric computed tomography histogram analysis in adrenal masses

Mustafa Orhan NALBANT, Ercan İNCİ

Does melatonin as an antioxidant and anticancer agent potentiate the efficacy of curcumin?

Sude TOPKARAOĞLU, Alpaslan TANOĞLU

Evaluation and epigenetic impact of B12, vitamin D, folic acid and anemia in Hashimato's thyroiditis

Elif Sibel ASLAN, Savaş GÜR

Lowering propionic acid levels by regulating gut microbiota with ursodeoxycholic acid appears to regress autism symptoms: an animal study

Levent KARAKAŞ, Volkan SOLMAZ, Erman BAĞCIOĞLU, Bahattin OZKUL, İbrahim SÖĞÜT, Yiğit UYANIKGİL, Oytun ERBAŞ