Distraksiyon ostegenizisi ve maksillofasyal bölge güncel uygulamaları :derleme

Distraksiyon osteogenezisi kallusu gererek yeni kemik oluşturma tekniğidir. Bu teknik ilk olarak Rus bilim adamı ortopedist İlizarov tarafından uzun kemiklerde geliştirilmiştir.Distraksiyon osteogenezisi; osteotomi periyodu, latent periyod, distraksiyon periyodu ve konsolidasyon periyodu olmak üzere 4 safhadan oluşmaktadır. Kolay, etkili ve komplikasyonu az olan bir uygulamadır. Distraksiyon osteogenezisi, maksillofasiyal cerrahide yaygın olarak kullanılabilmesi için modifikasyonlara ve geliştirmelere ihtiyaç duyulan bir tekniktir. Distraksiyon osteogenezisi tekniğinin gelişmesi için materyal ve teknik olarak birçok araştırma yapılmıştır ve birçok gelişme kaydedilmiştir. Ancak bu araştırmalar henüz tam bir kesinlik kazanmamakla beraber olumlu sonuçlar vermektedir

Distraction osteogenesis and current applications of maxillofacial region: systematic review

Distraction osteogenesis is a new bone forming technique by stretching the callus. This technique was first developed in the long bones by the Russian orthopedist Ilizarov. Distraction osteogenesis consist of 4 stages; osteotomy period, latent period, distraction period and consolidation period. It is easy, effective and less complicated. Distraction osteogenesis is a developing technique that requires modifications and improvements to be widely used in maxillofacial surgery. A lot of research has been made in material and technique for the development of distraction osteogenesis technique and many improvements have been made. However, although these studies have not yet been completely accurate, they give positive results.

___

  • 1. Goldwaser, B.R., et al., Automated continuous mandibular distraction osteogenesis: review of the literature. Journal of Oral and Maxillofacial Surgery, 2012. 70(2): p. 407-416.
  • 2. Azuma, Y., et al., Low‐intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. Journal of bone and mineral research, 2001. 16(4): p. 671-680.
  • 3. Rossini, G., et al., Mandibular distraction osteogenesis: a systematic review of stability and the effects on hard and soft tissues. International journal of oral and maxillofacial surgery, 2016. 45(11): p. 1438-1444.
  • 4. Codivilla, A., The classic: on the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Clinical orthopaedics and related research, 2008. 466(12): p. 2903-2909.
  • 5. Abbott, L.C., The operative lengthening of the tibia and fibula. JBJS, 1927. 9(1): p. 128-152.
  • 6. Ilizarov, G.A., The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clinical orthopaedics and related research, 1989(238): p. 249-281.
  • 7. Snyder, C.C., et al., Mandibular lengthening by gradual distraction: preliminary report. Plastic and reconstructive surgery, 1973. 51(5): p. 506-508.
  • 8. Zaffe, D., et al., Morphofunctional and clinical study on mandibular alveolar distraction osteogenesis. Clinical oral implants research, 2002. 13(5): p. 550-557.
  • 9. McCarthy, J., et al., Lengthening the human mandible by gradual distraction. 1992.
  • 10. Cope, J.B., M.L. Samchukov, and A.M. Cherkashin, Mandibular distraction osteogenesis: a historic perspective and future directions. American journal of orthodontics and dentofacial orthopedics, 1999. 115(4): p. 448-460.
  • 11. Maheshwari, S., et al., Biomechanics and orthodontic treatment protocol in maxillofacial distraction osteogenesis. National journal of maxillofacial surgery, 2011. 2(2): p. 120.
  • 12. Tümer, M.K., Et Al., Mandibulada Uygulanan Monofokal Distraksiyon Osteogenezisinin Biyomekanik Etkilerinin Sonlu Elemanlar Analizi Yöntemi İle Araştirilmasi. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 23(3): p. 350-355.
  • 13. Emtiaz, S., et al., Alveolar vertical distraction osteogenesis: historical and biologic review and case presentation. International Journal of Periodontics & Restorative Dentistry, 2006. 26(6).
  • 14. Block, M.S., et al., Changes in the inferior alveolar nerve following mandibular lengthening in the dog using distraction osteogenesis. Journal of oral and maxillofacial surgery, 1993. 51(6): p. 652-660.
  • 15. Bouletreau, P.J., S.M. Warren, and M.T. Longaker, The molecular biology of distraction osteogenesis. Journal of Cranio-Maxillofacial Surgery, 2002. 30(1): p. 1-11.
  • 16. Mülayim, Ö., F. Uzuner, and B.I. Aslan, Dudak damak yarıklı hastalarda alveoler distraksiyon osteogenez uygulamaları: literatür derlemesi. Acta Odontologica Turcica, 2016. 33(2): p. 102-8.
  • 17. Keçeli, D.H.G., et al., Distraksiyon Osteogenez: Yeni Kemik Formasyonu, Tarihçe ve Biyolojik Prensipler: Bölüm 1 Distraction Osteogenesis: New Bone Formation, History and Biologic Principles: Part.
  • 18. Esposito, M., et al., The efficacy of horizontal and vertical bone augmentation procedures for dental implants-a Cochrane systematic review. Eur J Oral Implantol, 2009. 2(3): p. 167-84.
  • 19. Cope, J.B., R.P. Harper, and M.L. Samchukov, Experimental tooth movement through regenerate alveolar bone: a pilot study. American journal of orthodontics and dentofacial orthopedics, 1999. 116(5): p. 501-505.
  • 20. Keçeli, H., et al., Dişhekimliğinde Distraksiyon Osteogenez: Bölüm 2. Hacettepe Diş Hek Fak Dergisi, 2006. 30: p. 20-30.
  • 21. Master, D.L., P.R. Hanson, and A.K. Gosain, Complications of mandibular distraction osteogenesis. Journal of Craniofacial Surgery, 2010. 21(5): p. 1565-1570.
  • 22. Cohen, S.R., C. Simms, and F.D. Burstein, Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial deformities. Plastic and reconstructive surgery, 1998. 101(2): p. 312-318.
  • 23. Lee, S.J., et al., Effect of recombinant human bone morphogenetic protein-2 and adipose tissue-derived stem cell on new bone formation in high-speed distraction osteogenesis. The Cleft Palate-Craniofacial Journal, 2016. 53(1): p. 84-92.
  • 24. Tee, B. and Z. Sun, Mandibular distraction osteogenesis assisted by cell‐based tissue engineering: a systematic review. Orthodontics & craniofacial research, 2015. 18: p. 39-49.
  • 25. Cohen, S.R., et al., Surgical techniques of cranial vault expansion for increases in intracranial pressure in older children. The Journal of craniofacial surgery, 1993. 4(3): p. 167-76; discussion 174-6.
  • 26. Kim, U.-K., et al., Bone regeneration in mandibular distraction osteogenesis combined with compression stimulation. Journal of oral and maxillofacial surgery, 2006. 64(10): p. 1498-1505.
  • 27. El-Hakim, I., et al., Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. International journal of oral and maxillofacial surgery, 2004. 33(1): p. 42-47.
  • 28. Muhonen, A., et al., The effects of irradiation and hyperbaric oxygen on bone formation during rabbit mandibular distraction. Archives of oral biology, 2002. 47(10): p. 701-707.
  • 29. Al Ruhaimi, K., Effect of calcium sulphate on the rate of osteogenesis in distracted bone. International journal of oral and maxillofacial surgery, 2001. 30(3): p. 228-233.
  • 30. Lim, H.J., et al., Application of Autologous Human Bone Marrow-Derived Mesenchymal Stem Cells in Distraction Osteogenesis for the Treatment of Bilateral Mandibular Hypoplasia. Journal of Craniofacial Surgery, 2018. 29(6): p. 1629-1632.
  • 31. Qi, M., et al., Mandibular distraction osteogenesis enhanced by bone marrow mesenchymal stem cells in rats. Journal of Cranio-Maxillofacial Surgery, 2006. 34(5): p. 283-289.
  • 32. Morillo, C.M.R., et al., Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review. Brazilian oral research, 2018. 32.
  • 33. Song, D., et al., Dental pulp stem cells expressing SIRT1 improve new bone formation during distraction osteogenesis. American journal of translational research, 2019. 11(2): p. 832.
  • 34. Medeiros, M.A.B., et al., Effects of laser vs ultrasound on bone healing after distraction osteogenesis: A histomorphometric analysis. The Angle Orthodontist, 2014. 85(4): p. 555-561.
  • 35. González-García, R., et al., The effect of radiation in distraction osteogenesis for reconstruction of mandibular segmental defects. British Journal of Oral and Maxillofacial Surgery, 2007. 45(4): p. 314-316.
  • 36. Pampu, A.A., et al., Experimental evaluation of the effects of zoledronic acid on regenerate bone formation and osteoporosis in mandibular distraction osteogenesis. Journal of oral and maxillofacial surgery, 2006. 64(8): p. 1232-1236.
  • 37. González-García, A., et al., Piezoelectric and conventional osteotomy in alveolar distraction osteogenesis in a series of 17 patients. International Journal of Oral & Maxillofacial Implants, 2008. 23(5).
  • 38. Toffler, M., N. Toscano, and D. Holtzclaw, Osteotome-mediated sinus floor elevation using only platelet-rich fibrin: an early report on 110 patients. Implant dentistry, 2010. 19(5): p. 447-456.
  • 39. Dohan, D.M., et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006. 101(3): p. e37-e44.
  • 40. Xu, H., et al., Effects of platelet-rich plasma and recombinant human bone morphogenetic protein-2 on suture distraction osteogenesis. Journal of Craniofacial Surgery, 2013. 24(2): p. 645-650.
  • 41. Mao, Z., N. Zhang, and Y. Cui, Three-dimensional printing of surgical guides for mandibular distraction osteogenesis in infancy. Medicine, 2019. 98(10).
  • 42. Chen, K., et al., Accuracy of Virtual Surgical Planning in Treatment of Temporomandibular Joint Ankylosis Using Distraction Osteogenesis: Comparison of Planned and Actual Results. Journal of Oral and Maxillofacial Surgery, 2018. 76(11): p. 2422. e1-2422. e20.
  • 43. Foley, M.J., et al., Computer Simulation and Optimization of Cranial Vault Distraction. The Cleft Palate-Craniofacial Journal, 2018. 55(3): p. 356-361.