CRISPR/Cas9 system in hematopoietic stem cells: Basic research and clinical applications

CRISPR/Cas9 system in hematopoietic stem cells: Basic research and clinical applications

Clustered regularly interspaced short palindromic repeats (CRISPR) approach adapted from the prokaryotic adaptive immune system against to pathogen attack is so valuable and promising tool for treatment of human malignant and non-malignant hematological disease and disorders through genome editing in hematopoietic stem cells (HSCs). Moreover, CRISPR/Cas9 approach is not only useful for therapeutic purposes; it is considerably preferred for the generation of in vitro and in vivo animal disease models. CRISPR/Cas9 approach has been developed for highly efficient on-target cleavage, and low off-target effect via delivery systems and manipulation of CRISPR components including single guide RNA (sgRNA) and Cas enzymes. In this review, we focused on the CRISPR/Cas9 system applications on hematopoietic stem cells in basic research and clinical area with basic research and clinical perspectives.

___

  • 1. Ishino, Y., M. Krupovic, and P. Forterre, History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of bacteriology. 2018, 200(7): e00580-17.
  • 2. Barrangou, R., The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current opinion in immunology. 2015, 32: 36-41.
  • 3. Rath, D., L. Amlinger, A. Rath, and M. Lundgren, The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015, 117: 119-128.
  • 4. Koonin, E.V. and K.S. Makarova, Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B. 2019, 374(1772): 20180087.
  • 5. Burmistrz, M., K. Krakowski, and A. Krawczyk-Balska, RNA-targeting CRISPR–Cas systems and their applications. International journal of molecular sciences. 2020, 21(3): 1122.
  • 6. Moon, S.B., D.Y. Kim, J.-H. Ko, and Y.-S. Kim, Recent advances in the CRISPR genome editing tool set. Experimental & molecular medicine. 2019, 51(11): 1-11.
  • 7. Barrangou, R., Diversity of CRISPR-Cas immune systems and molecular machines. Genome biology. 2015, 16(1): 1-11.
  • 8. Makarova, K.S., et al., An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology. 2015, 13(11): 722-736.
  • 9. Hille, F., et al., The biology of CRISPR-Cas: backward and forward. Cell. 2018, 172(6): 1239-1259.
  • 10. Barman, A., B. Deb, and S. Chakraborty, A glance at genome editing with CRISPR-Cas9 technology. Current Genetics. 2020, 66(3): 447-462.
  • 11. Kirchner, M. and S. Schneider, CRISPR‐Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering. Angewandte Chemie International Edition. 2015, 54(46): 13508-13514.
  • 12. Carroll, D., Focus: genome editing: genome editing: past, present, and future. The Yale journal of biology and medicine. 2017, 90(4): 653.
  • 13. Cox, D.B.T., R.J. Platt, and F. Zhang, Therapeutic genome editing: prospects and challenges. Nature medicine. 2015, 21(2): 121-131.
  • 14. Mao, Y.F., J.R. Botella, Y.G. Liu, and J.K. Zhu, Gene editing in plants: progress and challenges. National Science Review. 2019, 6(3): 421-437.
  • 15. Jiang, W. and L.A. Marraffini, CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annual review of microbiology. 2015, 69: 209-228.
  • 16. Kanchiswamy, C.N., M. Maffei, M. Malnoy, R. Velasco, and J.-S. Kim, Fine-tuning next-generation genome editing tools. Trends in Biotechnology. 2016, 34(7): 562-574.
  • 17. Gupta, D., et al., CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sciences. 2019, 232: 116636.
  • 18. Karimian, A., et al., CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology. 2019, 234(8): 12267-12277.
  • 19. Liu, C., L. Zhang, H. Liu, and K. Cheng, Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release. 2017, 266: 17-26.
  • 20. Zhang, X.-H., L.Y. Tee, X.-G. Wang, Q.-S. Huang, and S.-H. Yang, Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy-Nucleic Acids. 2015, 4: e264.
  • 21. Uddin, F., C.M. Rudin, and T. Sen, CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology. 2020, 10: 1387.
  • 22. Hu, Z., et al., Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed research international. 2014, 2014.
  • 23. Moses, C., et al., Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Molecular Therapy-Nucleic Acids. 2019, 14: 287-300.
  • 24. Cong, L., et al., Multiplex genome engineering using CRISPR/Cas systems. Science. 2013, 339(6121): 819-823.
  • 25. Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013, 8(11): 2281-2308.
  • 26. Daniel-Moreno, A., et al., CRISPR/Cas9-modified hematopoietic stem cells—present and future perspectives for stem cell transplantation. Bone Marrow Transplantation. 2019, 54(12): 1940-1950.
  • 27. Frati, G. and A. Miccio, Genome editing for β-hemoglobinopathies: Advances and challenges. Journal of Clinical Medicine. 2021, 10(3): 482.
  • 28. Miyaoka, Y., et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Scientific reports. 2016, 6(1): 1-12.
  • 29. Dever, D.P., et al., CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016, 539(7629): 384-389.
  • 30. Bak, R.O., D.P. Dever, and M.H. Porteus, CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nature protocols. 2018, 13(2): 358-376.
  • 31. Gundry, M.C., et al., Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell reports. 2016, 17(5): 1453-1461.
  • 32. Bauer, D.E., S.C. Kamran, and S.H. Orkin, Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Blood, The Journal of the American Society of Hematology. 2012, 120(15): 2945-2953.
  • 33. Lattanzi, A., et al., Optimization of CRISPR/Cas9 delivery to human hematopoietic stem and progenitor cells for therapeutic genomic rearrangements. Molecular Therapy. 2019, 27(1): 137-150.
  • 34. Wu, Y., et al., Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature medicine. 2019, 25(5): 776-783.
  • 35. Samuelson, C., et al., Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Molecular Therapy-Methods & Clinical Development. 2021, 23: 507-523.
  • 36. Yen, J., et al., TRIAMF: a new method for delivery of Cas9 ribonucleoprotein complex to human hematopoietic stem cells. Scientific reports. 2018, 8(1): 1-11.
  • 37. Pavani, G., et al., Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood advances. 2021, 5(5): 1137-1153.
  • 38. Mettananda, S., et al., Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nature communications. 2017, 8(1): 1-11.
  • 39. DeWitt, M.A., et al., Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science translational medicine. 2016, 8(360): 360ra134-360ra134.
  • 40. Park, S.H., et al., Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic acids research. 2019, 47(15): 7955-7972.
  • 41. Gutierrez-Guerrero, A., et al., Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the Wiskott-Aldrich syndrome locus. Human Gene Therapy. 2018, 29(3): 366-380.
  • 42. Rai, R., et al., Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich Syndrome. Nature communications. 2020, 11(1): 1-15.
  • 43. De Ravin, S.S., et al., CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Science translational medicine. 2017, 9(372): eaah3480.
  • 44. Sweeney, C.L., et al., Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene therapy. 2021, 28(6): 373-390.
  • 45. Pavel-Dinu, M., et al., Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nature communications. 2019, 10(1): 1-15.
  • 46. Gray, D.H., et al., Optimizing Integration and Expression of Transgenic Bruton's Tyrosine Kinase for CRISPR-Cas9-Mediated Gene Editing of X-Linked Agammaglobulinemia. The CRISPR Journal. 2021, 4(2): 191-206.
  • 47. Tajiri, N., et al., Autologous stem cell transplant with gene therapy for Friedreich ataxia. Medical hypotheses. 2014, 83(3): 296-298.
  • 48. Rocca, C.J., et al., CRISPR-Cas9 Gene Editing of Hematopoietic Stem Cells from Patients with Friedreich’s Ataxia. Molecular Therapy-Methods & Clinical Development. 2020, 17: 1026-1036.
  • 49. Gomez-Ospina, N., et al., Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nature communications. 2019, 10(1): 1-14.
  • 50. Fañanas-Baquero, S., et al., Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency. Molecular Therapy-Methods & Clinical Development. 2021, 22: 237-248.
  • 51. Pavani, G., et al., Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins. Nature communications. 2020, 11(1): 1-13.
  • 52. Humbert, O., et al., Engineering resistance to CD33-targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2. Leukemia. 2019, 33(3): 762-808.
  • 53. Kim, M.Y., et al., Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018, 173(6): 1439-1453. e19.
  • 54. Xiao, Q., et al., CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology. 2019, 16(1): 1-17.
  • 55. Xu, L., et al., CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy. 2017, 25(8): 1782-1789.
  • 56. Li, S., L. Holguin, and J.C. Burnett, CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Molecular Therapy-Methods & Clinical Development. 2022, 24: 321-331.
  • 57. Nurul Hidayah, Y.A.S. and R.L.M. Fitriana Kurniasari Solikhah, Potential CRISPR-Cas9 Associated Vector Lentivirus for CCR5 Gene Silencing On CD34+ Hematopoetic Cells Intermediate HIV-1 Resistance. Journal of Hunan University Natural Sciences. 2021, 48(2).
  • 58. Koniali, L., C.W. Lederer, and M. Kleanthous, Therapy development by genome editing of hematopoietic stem cells. Cells. 2021, 10(6): 1492.
  • 59. Skvarova Kramarzova, K., et al., CRISPR/Cas9-mediated correction of the FANCD1 gene in primary patient cells. International journal of molecular sciences. 2017, 18(6): 1269.
  • 60. Navarro, S., A. Giorgetti, A. Raya, and J. Tolar, Induced Pluripotency and gene editing in Fanconi Anemia. Current gene therapy. 2016, 16(5): 321-328.
  • 61. Rio, P., et al., Targeted gene therapy and cell reprogramming in F anconi anemia. EMBO molecular medicine. 2014, 6(6): 835-848.
  • 62. Raya, Á., et al., Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009, 460(7251): 53-59.
  • 63. Osborn, M.J., et al., CRISPR/Cas9 targeted gene editing and cellular engineering in Fanconi anemia. Stem cells and development. 2016, 25(20): 1591-1603.
  • 64. van de Vrugt, H.J., et al., Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Scientific reports. 2019, 9(1): 1-13.
  • 65. Román-Rodríguez, F.J., et al., NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with fanconi anemia. Cell Stem Cell. 2019, 25(5): 607-621. e7.
  • 66. Jeong, J., et al., High-efficiency CRISPR induction of t (9; 11) chromosomal translocations and acute leukemias in human blood stem cells. Blood advances. 2019, 3(19): 2825-2835.
  • 67. Sarrou, E., L. Richmond, R.J. Carmody, B. Gibson, and K. Keeshan, CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. International journal of molecular sciences. 2020, 21(12): 4266.
  • 68. Reimer, J., et al., CRISPR-Cas9-induced t (11; 19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica. 2017, 102(9): 1558.
  • 69. Schiroli, G., et al., Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science translational medicine. 2017, 9(411): eaan0820.
  • 70. Wagenblast, E., et al., Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nature communications. 2019, 10(1): 1-11.
  • 71. Hendel, A., et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature biotechnology. 2015, 33(9): 985-989.
  • 72. Mandal, P.K., et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell stem cell. 2014, 15(5): 643-652.
  • 73. Worthington, A.K. and E.C. Forsberg, A CRISPR View of Hematopoietic Stem Cells: Moving Innovative Bioengineering into the Clinic. American Journal of Hematology. 2022.