Kalpteki moleküler Ca+2 sinyali üzerinde TRPM katyon kanallarının rolleri

Transient reseptör potansiyel (TRP) kanalları melastatin (TRPM) kanal ailesi 8 memeli katyon kanalından oluşur ve hemen hemen her dokuda varlığı gösterilmiştir. Kalp ve damar sistemi de dahil olmak üzere tüm TRPM kanalları Ca2+ ve Na+ ’a karşı geçirgendir. Bu nedenle Ca+2 kanalı yerine katyon kanalı denmektedir. Aile üyeleri farklı aktivatörler tarafından etkin hale getirilir. Örnek olarak, TRPM2 katyon kanalları yüksek Ca+2 düzeyi (1μM) ile ilişkili olarak DNA hasarı sonucu ortaya çıkan ADP- riboz (ADPR) ile ya da oksidatif stres modeli hidrojen peroksit (H2 O2) tarafından aktive edilir. TRPM2 kanalları endotel sensörleri olarak da davranır ve kanallar endotelyal bariyer oksidatif stresin neden olduğu disfonksiyondan sorumludur. TRPM4 kardiyak ekstrasistol ve taşikardi gibi aritmilerin oluşumunda rol oynar. TRPM4 ventrikül kası kardiyomyosit hücrelerinde elektriksel potansiyelleri voltaja bağımlı olarak azaltmaktadır. TRPM4 aynı zamanda işlevsel olarak sinoatriyal hücrelerde ifade edilir ve kalp ritminin oluşmasında ve/veya düzensizliğinde anahtar rol oynayabildiği düşünülmektedir. Bu derlemede, deneysel çalışmalarda patch-clamp ve Ca+2 görüntüleme sistemiyle araştırılan antioksidanların inhibitör rolleri de ayrıca özetlenmiştir. Bu derleme çalışmasında sonuç olarak TRPM kanallarının insan kardiyovasküler hastalıklarının tedavisi için önemli yeni farmakolojik hedefler olduğu gözlemlenmiştir. 

___

  • Berridge, M.J., Bootman, M.D., Roderick, H.L., 2003. Calcium signallling: Dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
  • Berridge, M.J., Lipp, P., Bootman, M.D., 2000a. Signal transduction. The calcium entry pas de deux. Science. 287, 1604-1605.
  • Berridge, M.J., Lipp, P., Bootman, M.D., 2000b. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 11-21.
  • Berridge, M.J., Bootman, M.D., Roderick, H.L., 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
  • Boitano, S., Dirksen, E.R., Sanderson, M.J., 1992. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 258, 292-295.
  • Bootman, M.D., Collins, T.J., Peppiatt, C.M., Prothero, L.S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S.C., Seo, J.T, Berridge, M.J.,
  • Ciccolini, F., Lipp, P., 2001. Calcium signalling-an overview. Semin. Cell Dev. Biol. 12, 3-10.
  • Bootman, M.D., Roderick, H.L., 2008. Why, where and when do cardiac myocytes express inositol 1,4,5-triphospate receptors? Am. J. Physiol Heart Circ. Physiol. 294, H579-H581.
  • Clapham, D.E., Runnels, L.W., Strubing, C., 2001. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387-396.
  • Clapham, D.E., 2007. Snapshot: mammalian TRP channels. Cell. 129, 220.
  • Crow, M.T., Mani, K., Nam, Y-J., Kitsis, R.N., 2004. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res. 95, 957-970.
  • Demion, M., Bois, P., Launay, P., Guinamard, R., 2007. TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc. Res. 73, 531-538.
  • Earley, S., Straub, S.V., Brayden, J.E., 2007. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am. J. Physiol.- Heart C. 292, H2613-H2622.
  • Gray, A.C., Raingo, J., Limpscombe, D., 2007. Neural calcium channels: Splicing for optimal performance. Cell calcium. 42, 409-417.
  • Gomes, D.A., Rodrigues, M.A., Leite, M.F., Gomez, M.V., Varnai, P., Balla, T., Bennett , A.M., Nathanson, M.H., 2008. c-Met must translocate to the nucleus to initiate calcium signals. J. Biol. Chem. 283, 4344-4351.
  • Györke, S., Hagen, B.M., Terentyev, D., Lederer, W.J., 2007. Chain-reaction (Ca2+) signaling in the heart. J. Clin. Invest. 117, 1758-1762.
  • Guinamard, R., Demion, M., Chatelier, A., Bois, P., 2006. Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends Cardiovas. Med. 16, 245-250.
  • Halliwell, B., 2006. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 97, 1634-1658.
  • He, Y., Yao, G., Savoia, C., Touyz, R.M., 2005. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: Role of angiotensin II. Circ. Res. 96, 207-215.
  • Heiner, I., Eisfeld, J., Luckhoff, A., 2003. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium. 33, 533-540.
  • Katz, B., Minke, B., 2009. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, 2.
  • Knot, H.J., Nelson, M.T., 1998. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. 508, 199-209.
  • Lapointe, J.Y., Bell, P.D., Sabirov, R.Z., Okada, Y., 2003. Calcium activated nonselective cationic channel in macula densa cells. Am. J. PhysiolRenal. 285, F275-F280.
  • Laurant, P., Touyz, R.M., Schiffrin, E.L., 1997. Effect of magnesium on vascular tone and reactivity in pressurized mesenteric resistance arteries from spontaneously hypertensive rats. Can. J. Physiol. Pharm. 75, 293-300.
  • Launay, P., Fleig, A., Perraud, A.L., Scharenberg, A.M., Penner, R., Kinet, J.P., 2002. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 109, 397-407.
  • Macianskiene, R., Gwanyanya, A., Vereecke, J., Mubagwa, K., 2008. Inhibition of the magnesium-sensitive TRPM7-like channel in cardiac myocytes by nonhydrolysable gtp analogs: involvement of phosphoinositide metabolism. Cell Physiol. Biochem. 22, 109-118.
  • Montero, M., Alonso, M.T., Carnicero, E., Cuchillo-Ibáñez, I., Albillos, A., García, A.G., García-Sancho, J., Alvarez, J., 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2, 57-61.
  • Naziroglu, M., 2007. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem. Res. 32, 1990-2001.
  • Nazıroğlu, M., Lückhoff, A., 2008. A calcium influx pathway regulated separately by oxidative stress and ADP- ribose in TRPM2 channels: Single channel events. Neurochem. Res. 33, 1256-1262.
  • Nazıroğlu, M., Lückhoff, A., 2008. Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J. Neurol. Sci. 270, 152-158.
  • Nazıroğlu, M., 2011. TRPM2 cation channels, oxidative stress and neurological diseases: Where are we now? Neurochem. Res. 36, 355-366.
  • Nazıroğlu M. 2012 . Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J. Recept. Signal Transduct. Res. 32, 134-141.
  • Nilius, B., Prenen, J., Tang, J., Wang, C., Owsianik, G., Janssens, A., Thomas, V., Michael X.Z., 2005. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 280, 6423-6433.
  • Nilius, B., Owsianik, G., Voets, T., Peters, J.A., 2007. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165-217.
  • Nilius, B., 2007. TRP channels in disease. Biochim. Biophys. Acta. 1772, 805-812.
  • Nilius, B., Vennekens, R., 2006. From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch. 453, 313-321.
  • Putney, J.W., 1997. Type 3 inositol 1,4,5-triphosphate receptor and capacitative calcium entry. Cell Calcium. 21, 257-261.
  • Putney, J.W. Jr, McKay, R.R., 1999. Capacitative calcium entry channels. Bioessays 21, 38-46.
  • Ramsey, I.S., Delling, M., Clapham, D.E., 2006. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647.
  • Reading, S.A., Brayden, J.E., 2007. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke. 38, 2322-2328.
  • Satoh, S., Tanaka, H., Ueda, Y., Oyama, J., Sugano, M., Sumimoto, H., Mori, Y., Makino, N., 2007. Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell Biochem. 294, 205-215.
  • Scotland, R.S., Chauhan, S., Davis, C., De Felipe, C., Hunt, S., Kabir, J., Kotsonis, P., Oh, U., Ahluwalia A., 2004. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: A novel mechanism involved in myogenic constriction. Circ. Res. 95, 1027-1034.
  • Suh, S.H., Watanabe, H., Droogmans, G., Nilius, B., 2002. ATP and nitric oxide modulate a Ca2+-activated non-selective cation current in macrovascular endothelial cells. Pflügers Arch. 444, 438-445.
  • Talavera, K., Yasumatsu, K., Voets, T., Droogmans, G., Shigemura, N., Ninomiya, Y., 2005. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature. 438, 1022-1025.
  • Trepakova, E.S., Csutora, P., Hunton, D.L., Marchase, R.B., Cohen, R.A., 2000. Bolotina VM. Calcium influx factor directly activates storeoperated cation channels in vascular smooth muscle cells. J. Biol. Chem. 275, 26158-26163.
  • Touyz, R.M., He, Y., Montezano, A.C., Yao, G., Chubanov, V., Gudermann, T., Callera, G.E., 2006. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Physıol-Reg. I.290, R73-R78.
  • Touyz, R.M., 2003. Role of magnesium in the pathogenesis of hypertension. Mol. Aspects Med. 24, 107-136.
  • Watanabe, H., Murakami, M., Ohba, T., Takahashi, Y., Ito, H., 2008. TRP channel and cardiovascular disease. Pharmacol Therapeut, 118, 337- 351.
  • Welsh, D.G., Morielli, A.D., Nelson, M.T., Brayden, J.E., 2002. Transient receptor potential channels regulatemyogenic tone of resistance arteries. Circ. Res. 90, 248-250.
  • Yang, K.T., Chang, W.L., Yang, P.C., Chien, C.L., Lai, M.S., Su, M.J., Wu M.L., 2006. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 13, 1815-1826.
  • Yang, X.R., Lin, M.J., McIntosh, L.S., Sham, J.S., 2006. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am. J. Physiol- Lung C. 290, L1267-L1276.