İkili Kuadratik Formlar İle Çarpanlara Ayırma (Factorization with Binary Quadratic Forms)

İkili Kuadratik Formlar İle Çarpanlara Ayırma (Factorization with Binary Quadratic Forms)

TR

___

  • D. Boneh, Twenty Years of Attacks on the RSA Cryptosystem, Notices of AMS, 1999.
  • D. A. Buell, Binary Quadratic Froms (Classical Theory and Modern Computations), Springer-Verlag, 1989.
  • 3. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000.
  • 4. H. Cohen, H. W. Lenstra , Heuristics on class groups of number fields, Number Theory,Noordwijkerhout 1983, LN in Math. 1068, Springer-Verlag, 1984, 33-62.
  • 5. D. A. Cox, “Primes of the form x 2 + ny 2 - Fermat, class field theory, and complex multiplication,” John Wiley & Sons, New York, 1989.
  • 6. R. Crandall, C. Pomerance, Prime numbers: a computational perspective, Springer, New York, 2001.
  • 7. H. Davenport, H. Heilbronn, On the Density of Discriminants of Cubic Fields II, Proc. lloy.Soc. Lond. A 322 (1971), 405-420.
  • 8. G. Degert, Uber die bestimmung der grundeinheit gewisser reell-quadratischen zahlkorper. Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
  • 9. D. Goldfeld, Gauss’ class number problem for imaginary quadratic fields, Bulletin of the AMS,Volume 13, November 1,23-37, 1985.
  • 10. P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3. J. Number Theory 6 (1974), 76-278.
  • 11. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649–673.
  • 12. C. Richaud, Sur la resolution des equations x 2 − Ay 2 = ±1. Atti. Acad. Pontif. Nuovi Lincei (1866), 177-182.
  • 13. R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems. Commun. of the ACM, 21:120-126, 1978.
  • 14. D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. in Pure Maths. 20, A.M.S., Providence, R.I., 1969, 415-440.
  • 15. D. Shanks, On Gauss and composition I and II, Number Theory and Applications, R. Mollin (ed.), Kluwer Academic Publishers, 1989, 263-204.
  • 16. L.C. Washington, Introduction to Cyclotomic Fields, 2nd edition, Springer, 1996.