Eksenel Hidrostatik Yatak Tasarımı için Analitik Model ve Tasarım Parametrelerinin CYM ile Değerlendirilmesi (Analytical Model for Axial Hydrostatic Bearing Design and Evaluation of Design Parameters with CYM)

Eksenel Hidrostatik Yatak Tasarımı için Analitik Model ve Tasarım Parametrelerinin CYM ile Değerlendirilmesi (Analytical Model for Axial Hydrostatic Bearing Design and Evaluation of Design Parameters with CYM)

(TR) Hidrostatik yataklar, yüksek basınçlı ve nispeten ince yağ filmleri sayesinde, yüksek sönümleme, rijitlik ve yük kapasitesi gibi avantajlarının yanında son derece düşük hareket hataları potansiyeline sahiptir. Genellikle boyutsal ve geometrik toleranslar son derece yüksek hassas olduğundan birçok makine üreticisi de kendi hidrostatik yatak sistemlerini tasarlamayı ve üretmeyi tercih etmektedirler. Bu makalenin amacı, bir eksenel hidrostatik yatağın performansını değerlendirebilecek ve yatak tasarımına yardımcı olabilecek bir analitik modeli gerçekleştirmektir. Böylece hidrostatik yatak geometrilerinin yük kapasitesi, gerekli debi, rijitlik, ve güç tüketimi için hesaplamaları yapılabilecektir. Aynı zamanda performans üzerinde etkili olan tasarım parametrelerinin cevap yüzeyi yöntemi (CYM) kullanılarak bir değerlendirilmesi de yapılarak optimal tasarımlar elde edilecektir. (EN) Hydrostatic bearings have the advantages of high damping, stiffness and load capacity, as well as the potential for extremely low movement errors due to their high pressure and relatively thin oil films. Since dimensional and geometrical tolerances are usually extremely precise, many machine builders prefer to design and manufacture their own hydrostatic bearing systems. The aim of this paper is to realize an analytical model that can evaluate the performance of an axial hydrostatic bearing and assist in bearing design. This will enable the calculation of hydrostatic bearing geometries for load capacity, required flow rate, stiffness, and power consumption. At the same time, an evaluation of the design parameters affecting the performance using the response surface method (RSM) will be performed to obtain optimal designs.

___

  • [1] Rowe, W. B.,“Hydrostatic, aerostatic and hybrid bearing design”, Elsevier, (2012).
  • [2] Patil, S., Khairnar, A., Phalle, V. M., Limaye, P. K., “Design of self-compensating hydrostatic bearing for actuators”, An International Conference on Tribology (TRIBOINDIA) Haryana, India, (2018) : 1-6.
  • [3] Yuan, S., Decheng, Z., “Design procedure of an advanced spherical hydrostatic bearing used in rotary forging presses”, International Journal of Machine Tools and Manufacture 37(5) (1997) : 649-656.
  • [4] Xu, E., Wang, Y., Wu, J., Xu, S., Wang, Y., & Wang, S., “Investigations on the applicability of hydrostatic bearing technology in a rotary energy recovery device through CFD simulation and validating experiment”, Desalination 383 (2016) : 60-67.
  • [5] Kowalski, K., Tadeusz, Z., “An analysis of pressure distribution in water and water emulsion in a front gap of a hydrostatic bearing”, Teka Komisji Motoryzacji i Energetyki Rolnictwa 14(4) (2014) : 45-52.
  • [6] Michalec, M., Ondra, M., Svoboda, M., Chmelík, J., Zeman, P., Svoboda, P., Jackson, R. L., “A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation”, Tribology Letters 71(2) (2023) : 52.
  • [7] Shang, Y., Cheng, K., Ding, H., Chen, S., “Design and Optimization of the Surface Texture at the Hydrostatic Bearing and the Spindle for High Precision Machining”, Machines 10(9) (2022) : 806.
  • [8] Lin, S. C., Lo, Y. H., Lin, Y. H., Tung, W. T., Lai, T. H., “Design and Performance Analysis of Dual Membrane Restrictor for Hydrostatic Bearing”, Lubricants 10(8) (2022) : 179.
  • [9] Wardle, F. “Ultra-precision bearings”, Elsevier, (2015).
  • [10] Zhou, J., Hatami, M., Song, D., Jing, D., “Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods”, International Journal of Heat and Mass Transfer 103 (2016) : 715-724.
  • [11] Rahimi-Gorji, M., Pourmehran, O., Hatami, M., Ganji, D.D., “Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis”, The European Physical Journal Plus 130 (2015) : 1-21.
  • [12] Roy, R. K., “Design Experiments Using the Taguchi Aproach:16 Steps to Product and Process. Improvement”, A Wiley–Interscience Publication, (2003).