The calculation of greenhouse gas emissions of a family and projections for emission reduction

The calculation of greenhouse gas emissions of a family and projections for emission reduction

The article shows how to calculate greenhouse gas emissions of a family and emission reduction activities according to IPCC documents and ISO 14064-1 standards. In this study, direct and energy indirect emissions in 2017 are calculated. Then, within the scope of emission reduction activities, PV system installation, boiler exchange and led conversion are projected. As a result of the calculations, the total emission of the family is found to be 5,331 tons CO2-Eq. 84.1% of the total emission is direct emissions that is 4,484 tons CO2-Eq. The remaining 15.9% is energy indirect emission that is 0,847 tons CO2-Eq. Besides, 0,407 tons CO2-Eq from direct emission and 0,464 tons CO2-Eq from energy indirect emission are reduced. With the help of simple projections, we can reduce direct emissions by approximately 8%, while energy indirect emissions by about 55%. It is thought that the study will guide the calculation of greenhouse gas emissions and will also help those who wish to reduce greenhouse gas emissions.

___

  • Serengil, Y. Küresel Isınma ve Olası Ekolojik Sonuçları [Global Warming and Possible Ecological Consequences]. İstanbul Üniversitesi Orman Fakültesi Dergisi,1995, 45(1-2), 135-152. Retrieved from http://dergipark.gov.tr/jffiu/issue/18733/197557
  • Türkeş, M. IPCC İklim Değişikliği 2013: Fiziksel Bilim Temeli Politikacılar için Özet Raporundaki Yeni Bulgu ve Sonuçların Bilimsel Bir Değerlendirmesi [IPCC Climate Change 2013: A Scientific Assessment of New Findings and Results in the Summary Report for Political Scientists in Physical Science] , İklim Değişikliğinde Son Gelişmeler: IPCC 2013 Raporu Paneli Bildiriler Kitapçığı, İstanbul Politikalar Merkezi, Sabancı Üniversitesi, İstanbul,2013, 8-18.
  • Davarcıoğlu, B. Küresel İklim Değişikliği ve Uyum Çalışmaları: Türkiye Açısından Değerlendirilmesi [Global Climate Change and Adaptation Activities: Evaluation of Turkey]. Mesleki Bilimler Dergisi,2018, 7(2). Retrieved from http://dergipark.gov.tr/mbd/issue/40281/407992
  • Bilgiç, E. İklim Değişikliği ile Mücadelede Emisyon Ticareti ve Türkiye Uygulaması [Emissions Trading in Combating Climate Change and Practice of Turkey], Specialist Thesis, Ministry of Environment and Urbanization, Ankara,Turkey,2017, 29-48.
  • TS EN ISO 14064-1. Greenhouse Gases-Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. Turkish Standards Institution. Ankara, Turkey, 2007.
  • TS EN ISO 14064-2. Greenhouse Gases-Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements. Turkish Standards Institution. Ankara, Turkey, 2007.
  • TS EN ISO 14064-3. Greenhouse Gases-Part 3: Specification with guidance for the validation and verification of greenhouse gas assertions. Turkish Standards Institution. Ankara, Turkey, 2007.
  • Turkish Statistical Institute. Sera gazı emisyonları (milyon ton eCO2) [Greenhouse Gas Emission (Million ton CO2-Eq)]. Ankara, 2018. Retrieved May 15, 2019, from http://www.tuik.gov.tr/PreTablo.do?alt_id=1019
  • Turkish Statistical Institute. Sera Gazı Emisyon İstatistikleri [Greenhouse Gas Emission Statistics], No 27675. Ankara, 2018. Retrieved Mayr 15, 2019, from http://tuik.gov.tr/OncekiHBArama.do
  • UNFCCC. Republic of Turkey Intended Nationally Determined Controbution, 2015, Ankara, Turkey.
  • International Energy Agency. World Energy Outlook 2014,2015, IEA, 1-8.
  • Rico, A., Martínez-Blanco, J., Montlleó, M., Rodríguez, G., Tavares, N., Arias, A., Oliver-Solà, J. Carbon footprint of tourism in Barcelona. Tourism Management,2019, 70, 491-504. doi:10.1016/j.tourman.2018.09.012
  • Bastianoni, S., Marchi, M., Caro, D., Casprini, P., and Pulselli, F. M. The connection between 2006 IPCC GHG inventory methodology and ISO 14064-1 certification standard – A reference point for the environmental policies at sub-national scale. Environmental Science and Policy,2014, 44, 97-107. doi:10.1016/j.envsci.2014.07.015
  • Ayalon, O., Lev-On, M., Lev-On, P., Goldrath, T. Greenhouse Gas emissions reporting in Israel: Means to manage energy use. Energy Conversion and Management, 2014, 85, 612-618. doi:10.1016/j.enconman.2014.04.064
  • Ponstein, H. J., Meyer-Aurich, A., Prochnow, A. Greenhouse gas emissions and mitigation options for German wine production. Journal of Cleaner Production, 2019, 212, 800-809. doi:10.1016/j.jclepro.2018.11.206
  • Kılıç, E., Puig, R., Zengin, G., Zengin, C. A., Fullana-I-Palmer, P. Corporate carbon footprint for country Climate Change mitigation: A case study of a tannery in Turkey. Science of The Total Environment, 2018, 635, 60-69. doi:10.1016/j.scitotenv.2018.04.111
  • Babaoğlu, N, Özgünoğlu, K. Kahramanmaraş Havalimanı İçin Uçaklardan Kaynaklanan Emisyonların Belirlenmesi [Determination of Aircraft Emissions at Kahramanmaraş Airport]. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences, 2017, 20 (3), 24-30. DOI: 10.17780/ksujes.335226
  • Sangwan, K. S., Bhakar, V., Arora, V., Solanki, P. Measuring Carbon Footprint of an Indian University Using Life Cycle Assessment. Procedia CIRP, 2018, 69, 475-480. doi:10.1016/j.procir.2017.11.111
  • Marchi, M., Neri, E., Pulselli, F. M., Bastianoni, S. CO2 recovery from wine production: Possible implications on the carbon balance at territorial level. Journal of CO2 Utilization, 2018, 28, 137-144. doi:10.1016/j.jcou.2018.09.021
  • Marchi, M., Pulselli, F. M., Mangiavacchi, S., Menghetti, F., Marchettini, N., Bastianoni, S. The greenhouse gas inventory as a tool for planning integrated waste management systems: A case study in central Italy. Journal of Cleaner Production,2017, 142, 351-359. doi:10.1016/j.jclepro.2016.05.035
  • IPCC. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Guidelines for National Green House Gas Inventories Volume 2 Chapter 2 Stationary Combustion, IGES, Japan, 2006.
  • Europen Commission. Photovoltaic Geographical Information System, 2017. Retrieved May 15, 2019, from http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html
  • Özdemir, M.B.; Yatarkalkmaz, M.M. Energy, Exergy and Economic Analysis of Different Types of Collectors. Gazi Journal of Engineering Sciences ,2015, 1 (2), 235-251.
  • IPCC. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Guidelines for National Green House Gas Inventories Volume 3 Chapter 7 Emission of Flourinated Substitutes for Ozone Depleting Substances, IGES, Japan, 2006.
  • IPCC. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Guidelines for National Green House Gas Inventories Volume 2 Chapter 3 Mobile Combustion, IGES, Japan, 2006.
  • IPCC. In: Stocker, T., Dahe, Q., Plattner, G.K. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the IPCC. IPCC, Stockholm, 2013.
  • Turkish Electricity Transmission Company. Producer Organizations Distribution of Fuels Consumed in Thermal Power Plant Turkey (2006-2017), 2018. Retrieved December 25, 2018, from https://www.teias.gov.tr/tr/iv-turkiye-termik-santrallarinda-kullanilan-yakit-miktarlari-isil-degerleri-ve-kojenerasyon-0
  • Turkish Electricity Transmission Company. Producer Organizations Heat Value of Distribution of Thermal Power Plant Fuel Used in Turkey (2006-2017), 2018. Retrieved December 25, 2018, from https://www.teias.gov.tr/tr/iv-turkiye-termik-santrallarinda-kullanilan-yakit-miktarlari-isil-degerleri-ve-kojenerasyon-0
  • Turkish Electricity Transmission Company. Turkey Electricity Energy Consumption and Production Development of Annual Loss (1993- 2017), 2018. Retrieved December 25, 2018, from https://www.teias.gov.tr/tr/iii-elektrik-enerjisi-uretimi-tuketimi-kayiplar-0