Evaluation through finite element and numerical simulation of triboelectric polymer pairs in vertical contact mode

Evaluation through finite element and numerical simulation of triboelectric polymer pairs in vertical contact mode

Triboelectric nanogenerators are shown a recent development in the energy field in various applications powering sensors to biomedical applications. The research development of tribogenerators is trending in the renewable energy area as it can harness waste mechanical energy due to the friction. Studies have shown various mathematical modeling done on the triboelectric principle based on Gauss electric field principle. Triboelectricity generation due to contact electrification depends on various factors that include the surface charge density, materials, the geometrical features of the tribo pairs, the mode of operation in terms of velocity etc. The significance of nanomaterials in the generation of triboelectricity is a research area where polymers have shown good results. In this study, a detailed computational and numerical simulation is done on selected pairs of triboelectric material combination chosen from the triboelectric series. Computational simulation is performed using Comsol Multiphysics to evaluate the output performance in terms of Voc and Qsc. Numerical simulation is performed using MatLab to evaluate the output performance current, power, voltage with respect to time for selected input parameters. The numerical performance of the device is validated by the experiments. The numerical method adopted will be a useful tool for determining the output characteristics of any triboelectric pairs.

___

  • [1] Bhamre, S, Mali, S, Mane, C. Optimization of electric vehicle based on triboelectric nanogenerator. In: E3S Web of Conferences 6th International Conference on Energy and City of the Future (EVF’2019); 28 May 2020: EDP Sciences, pp. 01027.
  • [2] Bilgen, S, Kaygusuz, K,Sari, A. Renewable Energy for a Clean and Sustainable Future. Energy Sources 2004; 26(12):1119–1129, DOI: 10.1080/00908310490441421.
  • [3] Qiu, C, Wu, F, Lee, C, Yuce, M. R. Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 2020; 70: 104456, DOI: 10.1016/j.nanoen.2020.104456.
  • [4] Fatma, B, Gupta, S, Chatterjee, C, Bhunia, R, Verma, V,Garg, A. Triboelectric Generator made of Mechanically Robust PVDF Film as Self-powered Autonomous Sensor for Wireless Transmission Based Remote Security System. Journal of Materials Chemistry 2020; 8:15023-15033, DOI: 10.1039/D0TA04716C
  • [5] Mahapatra, B, Kumar Patel, K, Vidya, Patel, P. K. A review on recent advancement in materials for piezoelectric/triboelectricnanogenerators.MaterialsToday: Proceedings 2020; DOI:10.1016/j.matpr.2020.09.261.
  • [6] Askari, H, Hashemi, E, Khajepour, A, Khamesee, M. B, Wang, Z. L. Tire Condition Monitoring and Intelligent Tires Using Nanogenerators Based on Piezoelectric, Electromagnetic, and Triboelectric Effects. Advanced Materials Technologies 2018; 4: 1800105, DOI: 10.1002/admt.201800105.
  • [7] Wu, C, Wang, A. C, Ding, W, Guo, H, Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials 2019; 9(1):1802906, DOI : 10.1002/aenm.201802906.
  • [8] Wang, ZL, Lin, L, Chen, J, Niu, S, Zi, Y. Triboelectric nanogenerators. Basel, SWITZERLAND: Springer International Publishing, 2016.
  • [9] Yoo, D, Go, E. Y, Choi, D, Lee, J. W, Song, I, Sim, J. Y ,Kim, D. S. Increased interfacial area between dielectric layer and electrode of triboelectric nanogenerator toward robustness and boosted energy output. Nanomaterials 2019; 9(1):71, DOI: 10.3390/nano9010071.
  • [10] Baik, J. M, Lee, J. P. Strategies for ultrahigh outputs generation in triboelectric energy harvesting technologies: from fundamentals to devices. Science and Technology of Advanced Materials 2019; 20(1):927-936, DOI: 10.1080/14686996.2019.1655663.
  • [11] Kim, D. W, Lee, J. H, Kim, J. K, Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Materials 2020; 12(1):DOI:10.1038/s41427-019-0176-0.
  • [12] Choi, D, Park, Y. T, Kim, S. H, Park, J. H, Woo, C. S, Lee, K. S, Kook, M. J. Nanogenerators in Korea. Korea: MDPI-Multidisciplinary Digital Publishing Institute, 2019.
  • [13] Chen, A, Zhang, C, Zhu, G,Wang, Z. L. Polymer Materials for High‐Performance Triboelectric Nanogenerators. Advanced Science 2020; 7(14):2000186, DOI: 10.1002/advs.202000186.
  • [14] Lee, L. H.Dual mechanism for metal-polymer contact electrification. Journal of electrostatics 1994; 32(1): 1-29, DOI: 10.1016/0304-3886(94)90026-4.
  • [15] Lee, J. W, Ye, B. U,Baik, J. M. Research Update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator. APL Materials 2017; 5(7): 073802, DOI: 10.1063/1.4979306.
  • [16] Barkas, D. A, Psomopoulos, C. S, Papageorgas, P, Kalkanis, K., Piromalis, D, Mouratidis, A.Sustainable Energy Harvesting through Triboelectric Nano–Generators: A Review of current status and applications. Energy Procedia 2019; 157:999-1010.DOI: 10.1016/j.egypro.2018.11.267.
  • [17] Niu, S.,Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015; 14: 161-192. DOI : 10.1016/j.nanoen.2014.11.034.
  • [18] Abdelwahed, A, Amin, M, Elosairy, M, Abbasy, N. Theoretical modelling for enhancing contact-separation triboelectric nanogenerator performance :In 2016 Annual Connecticut Conference on Industrial Electronics, Technology & Automation (CT-IETA);14 October 2016:IEEE, pp. 1-5.
  • [19] Shafeek, S, Luo, J. Theoretical and numerical analysis of triboelectric nanogenerators for self-powered sensors: In 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA) ;6 December 2016 : IEEE’UAE ,pp. 1-4.
  • [20] Varghese, S, Shafeek, S, Kumar, R. S, Mini, R. S. Computational investigation of material combinations in triboelectric generators : In 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 21 November 2017: IEEE,UAE ,pp. 1-4.
  • [21] Yu, Y,Wang, X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters 2016; 9: 514-530, DOI: 10.1016/j.eml.2016.02.019.
  • [22] Uzun, Y., Kurt, E., Kurt, H.H. Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum, Sensors and Actuators A: Physical, 2015; 224, 119, DOI: 10.1016/j.sna.2015.01.033.
  • [23] Lee, B.Y, Kim, D.H, Park, J, Park, K.I, Lee, K.J, Jeong, C.K. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and technology of advanced materials 2019; 20(1): 758-773, DOI: 10.1080/14686996.2019.1631716.
  • [24] Thainiramit, P, Yingyong, P, Isarakorn, D. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters. Sensors 2020, 5828, DOI: 10.3390/s20205828.