Parenteral nutrisyon sıvılarının koagülaz-negatif stafilokok\'ların biyofilm oluşturması üzerine etkisi: Deneysel bir çalışma

Amaç: Çalışmamızda yoğun bakım ünitelerinde (YBÜ) kullanılan parenteral nütrisyon (PN) solüsyonlarının koagülaz negatif stafilokok (KNS)\'larda biyofilm oluşumuna etkisi araştırılmıştır. Gereç ve yöntem: Deneyde kan kültürlerden izole edilmiş olan 39 KNS ve ATCC 12228 kodlu referans Staphylococcus epidermidis suşları kullanıldı. Bakteri dilüsyonları için Triptik Soy Buyyon (TSB) besiyeri kullanıldı. Deney ortamları: 1. Glikoz, 2. Amino asit, 3. Lipit, 4. Üçlü karışım (Glikoz, Amino asit, Lipit), 5. Glikoz ve Amino asit, 6. Glikoz ve Lipit, 7. Amino asit ve Lipit, 8. Kontrol (TSB) şeklinde hazırlandı. Biyofilm oluşumu “Kantitatif mikrodilüsyon plak testi” yöntemi ile belirlendi. Yapılan değerlendirmede sınır değerin üzerinde olanlar biyofilm pozitif, altında olanlar ise negatif kabul edildi. Biyofilmi pozitif olanlar da kendi aralarında hafif, orta ve şiddetli olmak üzere 3 gruba ayrıldı. PN solüsyonu içeren 1\'den 7\'ye deney ortamlarında elde edilen biyofilm pozitif suş sayıları TSB ortamında elde edilenlerle ve birbirleriyle karşılaştırıldı. Bulgular: Üçlü karışım PN sıvısı ile ikili karışım PN sıvılarının (glikoz+lipit, amino asit+lipit karışımlarının) kontrol grubuna göre KNS\'ların biyofilm oluşumunu arttırıcı etkilerinin olduğu belirlendi. Biyofilm pozitifliği ortam 1 ve 2\'de kontrole göre anlamlı düşükken, 4, 6 ve 7\'de anlamlı yüksekti. Ortam 1, 2 ve 3 kendi aralarında; 4, 5, 6 ve 7 de kendi aralarında farksız sonuçlar verdiler. Sonuç: Çalışmamızda PN yapı taşlarından olan glikoz, amino asit ve lipit çözeltilerinin tek başlarına biyofilm oluşumunu azaltıcı, bunların karışımlarının ise artırıcı etkili oldukları tespit edilmiştir. Bu nedenle rutinde üçlü karışım olarak verilen PN solusyonlarının kateter enfeksiyonu riskini arttırdığını söyleyebiliriz.

Effect of parenteral nutrition solutions on biofilm formation of coagulase-negative Staphylococci: An experimental study

Objectives: In our study we investigated the effects of parenteral nutrition (PN) solutions on Coagulase negative staphylococci (CoNS) biofilm production. Materials and methods: Thirty nine CoNS strains isolated from hemocultures and a reference strain (ATCC 12228 Staphylococcus epidermidis) were included. Bacterial dilutions were made in Tryptic Soy Broth (TSB). The experimental mediums were 1. Glucose, 2. Amino acid, 3. Lipid, 4. Glucose+ Amino acid+ lipid, 5. Glucose+ Amino acid, 6. Glucose+ Lipid, 7. Amino acid+ Lipid, and 8. Control (TSB). Biofilm formation was evaluated by “quantitative microdilution plaque test”. The values greater than cut off value are considered as positive. Biofilm positivity was divided into 3 groups (mild, moderate and intensive) and all other strains under cutoff value were accepted as negative. The numbers of biofilm positive strains derived from 1-7. mediums were compared with each other, and with the results of control. Results: The three-component PN solution and two component PN solutions containing glucose+ lipid and amino acid+ lipid were found to increase the biofilm production activity of CoNS when compared to the control group. Slime positivity in medium 1 and 2 was lower than control significantly, in medium 4, 6, and 7 slime positivity was higher considerably. The indifferent results were obtained within the mediums 1, 2, 3 and within the mediums 4, 5, 6, and 7. Conclusions: In our study, it was found that, glucose, amino acid and lipid solutions which were building structures of PN decreased the biofilm production when used solitary. However use of the compounds increased the biofilm production. Therefore, we can conclude that PN solutions given as mixtures in routine practice increase the risk of catheter infection.

___

  • 1. Kreymann G, Adolph M, Druml W, Jauch K W. Intensive medicine-Guidelines on parenteral nutrition, Chapter 14. Ger Med Sci. 2009, 18(7); Doc.14.
  • 2. Pearson LM . Guideline for prevention of intravascular device related infections. Part 1. Intravascular device-related infections; an owerview. Hospital infection control practices advisory committee. Am J Infect Control 1996;24:262-77.
  • 3. O’Grady NP, Alexander M, Burns L A, et al. Guidelines for the prevention of intravascular chathater-related infections. CDC. 2011; 1-59 (http://www.cdc.gov/ hicpac/guidelineMethod/guidelineMethod.html).
  • 4. Madani N, Rosenthal VD, Dendane T. Healthcare associated infections rates, length of stay, and bacterial resistance in an intensive care unit of Morocco: findings of the International Nosocomial Infection Control Consortium (INICC) Int Arch Med 2009; 2(29):1-7.
  • 5. Leblebicioğlu H, Roshental VD, Arıkan OA Deviceassociated hospital-acquired infection rates in Turkish intensive care units. Findings of the International Nosocomial Infection Control Consortium (INICC). J Hosp Infect 2007;65(3):251-7.
  • 6. Jones HC, Roth IL, Saunders WM. III. Electron microscopic study of a slime layer. J Bacteriol 1969;99:316- 25.
  • 7. Donlan RM. Biofilm:microbial life on surfaces. Emerg Infect Dis 2002;8:881-90.
  • 8. Christensen G D, Barker L P, Mowhinney T P, Baddour L M, Simpson W A. Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect Immun 1990; 58(9): 2906-11.
  • 9. Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun1982;37:318-26.
  • 10. Gedik A, Ersay A, Atmaca S, Sener A. Oxybutynin effects on Staphylococcus epidermidis biofilm production. South Med J 2008 ,101(3);236-9.
  • 11. Roveta S, Marchese A, Schito GC. Activity of daptomycin on biofilms produced on a plastic support by Staphylococcus spp. Int J Antimicrob Agents 2008;31(4):321-8.
  • 12. Demirag MK, Esen S, Zivalioglu M, Leblebicioglu H, Keceligil HT. The effect of aspirin on adherence of slime-producing, coagulase-negative staphylococci to vascular grafts. Ann Vasc Surg 2007;21(4):464-7.
  • 13. Christensen GD, Baldassari L, Simpson WA. Colonization of medical devices by coagulase-negative staphylococci. Bisno A, Waldvogel FA, editors. Infections associated with indwelling Medical devices. 2 nd ed. Washington DC: ASM Press 1994: 45-78.
  • 14. Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue cultureplates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin Microbiol 1985;22:996-1006.
  • 15. Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115(8):891-9.
  • 16. Klemm P, Vejborg RM, Hancock V. Prevention of bacterial adhesion. Appl Microbiol Biotechnol 2010 ;88(2):451-9.
  • 17. Hebert GA, Cooksey RC, Clark NC, Hill BC, Jarvis WR, Thornsberry C. Biotyping coagulase-negative staphylococci. J Clin Microbiol 1988;26:1950-6.
  • 18. Davenport DS, Massanari RM, Pfaller MA, Bale MJ, Streed SA, Hierholzer WJ Jr. Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J Infect Dis 1986;153:332-9.
  • 19. Mermel LA, Farr BM, Sherertz RJ, et al. Guidelines for the Management of Intravascular Catheter–Related Infections. CID, 2001;32:1249-72.
  • 20. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a cammon cause of persistent infections. Science 1999;284:1318-22.
  • 21. Jurcisek J, Greiner L, Watanabe H, Zaleski A, Apicella MA, Bakaletz LO. Role of sialic acid and complex carbonhydrate biosynthesis in biofilm formation by nontypeable Heamophilus influenzae in the chinchilla middle ear. Infect Immun 2005; 73:3210-8.
  • 22. Sillanaukee P, Ponnio M, Jaaskelain IP. Occurance of sialic asids in healthy humans and different disorders. Eur J Clin Invest 1999; 29:413-25.
  • 23. Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett 2004; 236:163-73.
  • 24. Raad I, Chatzinikolaou I, Chaiban G, et al. In vitro and ex-vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on chathater surfaces. Antimicrob Agents 2003;47(11):3580-5.
  • 25. Kadry A. Impact of slime dispersants and anti-adhesive on in vitro biofilm formation of Staphylococcus epidermidis on intraocular lenses and on antibiotic activities. J Antimicrob Chemother 2009; 63(3): 480-4.
  • 26. Alsam S. Combination of tigecycline and n-acetylcysteine reduces biofilm-embedded bacteria on vascular catheters. Antimicrob Agents Chemother 2007; 51(4):1556-8.