Oxidative and antioxidative responses in submandibular and parotis glands of rats exposed to long-term extremely low frequency magnetic field

Amaç: Bazı epidemiyolojik ve laboratuar çalışmalar oldukça düşük frekanslı manyetik alan ile kanser arasında ilişki olduğunu ileri sürmektedir. Ancak bu etkileşimin altında yatan mekanizma tam olarak bilinmemektedir. Çalışmamızın amacı ratlardaki submandibular ve parotis bezleri üzerindeki uzun süreli oldukça düşük frekanslı manyetik alanın oksidatif ve antioksidatif etkilerini araştırmaktır. Yöntemler: Ratlar; çalışma düzeneği olarak günde 2 saat, yedi gün ve 10 ay boyunca insanlar için güvenli kabul edilen 100 ve 500 µT\'lık manyetik alana maruz bırakıldı. Aynı prosedür şham konrol grubuna uygulandı, fakat manyetik alan jeneratörü kapalı tutuldu. Çalışmanın bittiği 10. ay\'dan sonra katalaz, malondilaldehit, myeloperoksidaz, total antioksidan kapasite, total oksidan status ve oksidatif stress indeks parametreleri ölçüldü. Bulgular: ELF-100 ve ELF-500 uygulama grubunda bulunan ratların submandibular dokusunun bazı oksidatif ve antioksidatif parametrelerinde değişiklik olmakla birlikte, bu değişiklikler istatistiksel olarak anlamlı değildi (p>0.05). Ancak hem ELF-100 ve hem de ELF-500 uygulama grubunda bulunan ratların parotis bezlerinin katalaz düzeyinde anlamlı azalma gözlendi (p

Oxidative and antioxidative responses in submandibular and parotis glands of rats exposed to long-term extremely low frequency magnetic field

Background: Some epidemiologic and laboratory studies have suggested a possible associations between exposure to extremely low frequency magnetic field (ELF-MF) and cancer. However, it is not known underlying mechanisms of this interaction. The aim of the study was to investigate the possible oxidative damage induced by long-term ELF-MF exposure on submandibular and parotis glands of rats. Methods: Rats in the experimental group were exposed to 100 and 500 µT ELF-MF (2 h/day, 7 days/week, for 10 months) corresponding to exposure levels that are considered safe for humans. The same experimental procedures were applied to the sham group, but the ELF generator was turned off. The levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in rat submandibular and parotis gland. Results: Although some oxidative and antioxidative parameters of submandibular gland were altered by ELF-100 and ELF-500 exposure groups, these changes were not statistically significant ( p >0.05). However, a decrease observed in CAT levels of parotid gland in both the ELF-100 and ELF-500 exposure groups (p

___

  • Repacholi MH, Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 1999;20:133-160.
  • Kheifets L, Monroe J, Vergara X, et al. Occupational electromagnetic fields and leukemia and brain cancer: An update to two meta-analyses. J Occup Environ Med 2008;50:677-688.
  • O’ Carroll MJ, Henshaw DL. Aggregating epidemiologi- cal evidence: Comparing two seminal EMF reviews. Risk Analysis 2008;28:225-234.
  • International Agency Research on Cancer (IARC): Monographs of the evaluation of carcinogenic risks to humans. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. 2002,Vol.80. Lyon, France: IARC. pp 331-338.
  • Ahlbom A, Day N, Feychting M, et al. A pooled analy- sis of magnetic fields and childhood leukaemia. Brit J Cancer 2000;83:692-698.
  • Greenland S, Sheppard AR, Kaune WT, et al. A pooled analysis of magnetic fi elds, wire codes and childhood leukaemia. Epidemiology 2000;11:624-634.
  • Brocklehurst B, McLauchlan KA. Free radical mecha- nism for the effects of environmental electromag- netic fields on biological systems. Int J Radiat Biol 1996;69:3-24.
  • Eveson RW, Timmel CR, Brocklehurst B, et al. The ef- fects of weak magnetic fields on radical recombination reactions in micelles. Int J Radiat Biol 2000;76:1509- 1522.
  • Grissom CB. Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination. Chem Rev 1995;95:3-24.
  • McLauchlan K. Are environmental magnetic fields dangerous? Phys World 1992;5:41-45.
  • Steiner UE, Ulrich T. Magnetic field effects in chemi- cal kinetics and related phenomena. Chem Rev 1989;89:51-147.
  • World Health Organization (WHO). Extremely low fre- quency fields. Environmental health criteria 238,2007, Spain: WHO. pp 97-115.
  • Adair RK. Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics 1999;20:255-263.
  • Timmel CR, Till U, Brocklehurst B, et al. Effects of weak magnetic fields on free radical recombination reactions. Mol Phys 1998;95:71-89.
  • Guler G, Seyhan N and Aricioglu A. Effects of Static and 50 Hz Alternating Electric Fields on Superoxide Dismutase Activity and TBARS Levels in Guinea Pigs. Gen. Physiol. Biophys 2006;25:177-193.
  • Erdal N, Gurgul S, Tamer L, and Ayaz L. Effect of Long therm Exposure of Extremely Low frequency Magnetic Field on Oxidative/Nitrosative stres in Liver. J Radiat Res 2008;49:181-187.
  • Falone S, Mirabilio A, Carbone MC, et al. Chronic ex- posure to 50Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol 2008,40,2762-2770.
  • Chu LY, Lee JH, Nam YS, et al. Extremely low frequen- cy magnetic field induces oxidative stress in mouse cerebellum. Gen Physiol Biophys 2011;30:415-421.
  • Ciejka E, Kleniewska P, Skibska B, Goraca A. Effects of extremely low frequency magnetic field on oxida- tive balance in brain of rats. J Physiol Pharmacol 2011;62:657-661.
  • Cui Y, Ge Z, Rizak JD, et al. Deficits in water maze performance and oxidative stress in the hippocam- pus and striatum induced by extremely low frequency magnetic field exposure. PLoS One 2012;7: e32196. 10.1371/journal.pone.0032196.
  • International Commission on Non Ionizing Radiation Protection (ICNIRP): Guidelines for limiting exposure to time-varying electric and magnetic fi elds (1 Hz-100 kHz). Health Physics 2010;99:818-836.
  • Lowry OH, Rosebrough NL, Farr AL, Randall RF. Pro- tein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275
  • Wei H, Frenkel K: Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo pro- moting activity of phorbol ester-type tumor promoters. Carcinogenesis 1993;14:1195-1201.
  • Erel O. A novel automated method to measure total antioxidant response against potent free radical reac- tions. Clin Biochem 2004;37:112-119.
  • Erel O. A novel automated direct measurement meth- od for total antioxidant capacity using a new genera- tion, more stable ABTS radical cation. Clin Biochem 2004;37:277-285.
  • Erel O. A new automated colorimetric meth- od for measuring total oxidant status. Clin Bio- chem2005;38:1103-1111.
  • Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991;196:143-152.
  • Conti M, Morand PC, Levillain P, Lemonnier A: Im- proved fluorimetric determination of malondialdehyde. Clin Chem 1991;37:1273-1275.
  • Brigagao MRPL, Colepicolo P. Oscillations in super- oxide anion release by polymorphonuclear leuko- cytes and its inhibition by saliva. Biol Rhythm Res 1996;27:261-268.
  • Nagler RM, Kitrossky N, Chevion M. Antioxidant ac- tivity of rat parotid saliva. Arch Oto Head Neck Surg 1997;123:989-993.
  • Brigagao MRPL, Colepicolo P: Activation of neutro- phils is daily inhibited by saliva. Biol Rhythm Res 1998;29:598-605.
  • Nikolov NP, Illei GG. Pathogenesis of Sjögren’s syn- drome. Curr Opin Rheumatol 2009;21:465-70.
  • Limesand KH, Said S, Anderson SM. Suppression of radiation-induced salivary gland dysfunction by IGF-1. PLoSOne 2009;4:e4663.
  • Salvolini E, Martarelli D, Di Giorgio R, et al. Age-relat- ed modifications in human unstimulated whole saliva: a biochemical study. Aging 2000;12:445-448.
  • Nagler RM, Salameh F, Reznick AZ, et al. Salivary gland involvement in rheumatoid arthritis and its re- lationship to induced oxidative stress. Rheumatology 2003;42:1234-1241.
  • Abdollahi M, Fooladian F, Emami B, et al. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and sa- liva. Hum Exp Toxicol 2003;22:587-592.
  • de la Cal C, Lomniczi A, Mohn CE, et al. Decrease in salivary secretion by radiation mediated by nitric oxide and prostaglandins. Neuroimmunomodulation 2006;13:19-27.
  • Jajte J, Grzegorczyk, Zmyslony M, Rajkowska E. Ef- fect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical pro- cesses. Bioelectrochemistry 2002;57:107-111.
  • Yoshikawa T, Tanigawa M, Tanigawa T, et al. Enhance- ment of nitric oxide generation by low frequency elec- tromagnetic field Pathophysiology 2000;7:131-135.
  • Nogueira FN, Carvalho AM, Yamaguti PM, Nicolau J. Antioxidant parameters and lipid peroxidation in sali- vary glands of streptozotocin-induced diabetic rats. Clinica Chimica Acta 2005;353:133-139.
  • Chelikani P, Fita I, Loewen PC. “Diversity of struc- tures and properties among catalases”. Cell Mol Life Sci 2004;61:192-208.
  • Kula B, Sobczak A, and Rafał Kuska R. Effects of stat- ic and ELF magnetic fields on free-radical processes in rat liver and kidney. Electro- and Magnetobiology 2000;19:99-105.
  • Regoli F, Gorbi S, Machella N, et al. Pro-oxidant ef- fects of extremely low frequency electromagnetic fields in the land snail Helix aspersa. Free Radical Bi- ology and Medicine 2005:39:1620-1628.
  • Amaraa S, Abdelmelek H, Garrel C, et al.: Zinc supplementation ameliorates static magnetic field- induced oxidative stress in rat tissues. Environ Toxicol Pharmacol 2007;23:193-197.
  • Martínez-Sámano J, Torres-Durán PV, et al. Effects of acute electromagnetic field exposure and movement restraint on antioxidant system in liver, heart, kidney and plasma of Wistar rats: a preliminary report. Int J Radiat Biol 2010;86:1088-1094.
  • Sahebjamei H, Abdolmaleki P, Ghanati F. Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnet- ics 2007;28:42-47.
  • Akdag MZ, Dasdag S, Ulukaya E, et al. Effects of Ex- tremely Low-Frequency Magnetic Field on Caspase Activities and Oxidative Stress Values in Rat Brain, Biol Trace Elem Res 2010;138:238-249.
  • Akdag MZ, Dasdag S, Uzunlar AK, et al.: Can safe and long-term exposure to extremely low frequency (50 Hz) magnetic fields affect apoptosis, reproduction, and oxidative stres? Int J Radiation Biol 2013;89:1053- 1060.
  • Duan YQ, Wang ZG, Zhang HH, et al. The preventive effect of lotus seedpod procyanidins on cognitive im- pairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Function 2013;4:1252-1256.
  • Valberg PA. Designing EMF experiments: What is re- quired to characterize exposure? Bioelectromagnet- ics 1995;16:396-401.