The spatial and temporal distribution of auxin and gibberellin in sunflower (Helianthus annuus L.)

Indol-3-asetik asit (IAA) ve gibberellinlerin (GA3) paralel variyasyon ve meydana gelişleri bilateral simetrik organizma Helianthus annuus L.'nin farklı organlarında araştırıldı. Kök sistemine oranla toprak üstü organlarının hormon içeriklerinin eşit olmayan bir şekilde dağılım gösterdiği saptandı. Genotip variyasyonu ortaya kondu. Fj hibridinin kök, yaprak, infloresans ve çiçeklerindeki IAA konsantrasyonu, kendine döllenen hatlardan daha yüksek bulundu. Bu veriler oksin ve melez dinçliği arasındaki doğrudan ilişkiyi göstermektedir. En yüksek GA3 konsantrasyonu RW 637 Rf hattının yapraklarında saptandı. GA3 konsantrasyonu ontogenezde artarken, IAA konsantrasyonu gelişimle uyumluluk göstermiştir. Elde edilen veriler, ayçiçeğinde spatiyal (kök, gövde, yaprak ve çiçek) ve temporal (farklı, ontogenetik fazlar) dağılımın polarite oluşumu ve gelişimle ilgisini doğrulamaktadır.

Ayçiçeği bitkisinde (Helianthus annuus L.) oksin ve gibberellinlerin yer ve zamana bağlı dağılımı

The occurrence and the parallel variation of indole- 3-acetic acid (IAA) and gibberellins (GA3) in different organs of Helianthus annuus L. - bilaterally symmetric organism - were investigated at various developmental stages. It has been established unequal quantitative distribution characterized by higher hormone contents in the aerial organs in comparison with the root system. The genotype variation was revealed. The concentration of IAA in roots, leaves, inflorescences and flowers of the hybrid ¥x was higher than in inbred lines. These data demonstrate the direct correlation between auxin and hybrid vigor. The highest GA3 concentrations have been determined in leaves of the RW 637 Rf line. The GA3 concentration increases in ontogenesis while IAA concentration associated with centers of development. The obtained results demonstrate the spatial (roots, leaves, inflorescences, and flowers) and temporal distribution (at the diverse ontogenetic phases), that confirms the implication of these in polarity formation and developmental centers succession at sunflower.

___

  • Abel S, Theologis A. Early genes and auxin action. Plant Physiol. 11: 9-17, 1996.
  • Berengena I. Respuesta del girasol al rugo bajo diferentes condiciones ambientales. Helia. 1: 59-62, 1978.
  • Berleth T, Sachs T. Plant morphogenesis: long-distances coordination and local patterning. Plant Biology. 4: 57- 62, 2001.
  • Cavell, BD, Millan JM, Pryce RJ. Plant Hormones. Thin layer and gas-liquid chromatography of gibberellins: Direct identification of gibberellins in a crude plant extract by gas-liquid chromatography. Phytochem. 6: 867-874, 1967.
  • Ciailahean MN, Hreanin VN. Pol rasteniy i ego gormonalnaya regulaciya. Nauka, Moskva. 176, 1982.
  • Dospehov VA. Metodica polevogo opita. Agropromizdat, Moskva. 351, 1985.
  • Duca M, Duca Gh, Budeanu O. Procedeu de determinare a fitohormonilor. BOPI. Brevetul (MD), Nr. 788, 1997.
  • Fischer-Iglesias C, Sundberg B, Neuhaus G. Auxin distribution and transport during embryonic pattern formation in wheat. The Plant Journal. 262: 115-129, 2001.
  • Kefeli VI, Ciailahean, M.H. Nov”e tendentii v ucenii o reguleatorah rosta rastenii. Uspehi sovremennoi biologhii. 80. 1: 116-117, 1975.
  • Kende H. Zeevaart JAD. The five ÒclassicalÓ plant hormones. Plant Cell. 9: 1197-1210, 1997.
  • Kruglova NN, Gorbunova VI, Kukso PA. Morfoghenez v kuliture izolirovannih pilnicov, roli fitogormonov. Uspehi sovremennoi biologhii. 119. 6: 567-577, 1999.
  • Kuperman FN. Morfofiziologia rastenii. Morfofiziologicescii analiz etapov organogeneza razlicnih jiznennih form pocritosemennih rastenii. Moscva. 240.1984.
  • Kuznetsov, VV, Cerepneva GH, Porfirova SA, Macheev AV. Balans andogennih fitogormonov opredelaet nacialo razvitiya fotosinteticheskogo aparata u dvudolinih fitogormonov opredelaet nacialo razvitiya fotosinteticheskogo aparata u dvudolinih rasteniy. Docl. R.A.N. 339. 1: 137-139, 1994.
  • Macheev AV, Kuznetsov VV. Intensivnie i ekstensivnie e ffecti fitogormonov i razvitie fotohomocheskoy aktivnosti hloroplastov. Docl. R.A.N. 346. 1: 116-118, 1996.
  • Mochizuki N, Yamashita S, Kurokawa K. Spatio-temporal images of growth-factor-induced activation of Ras and Rap 1. Nature. 411: 1065-1068, 2001.
  • Neagu M. Contributii la biologia infloritului la floareasoarelui. Lucrari stiintifice a I.A. Timisoara. 1: 14-20, 1960.
  • Paquette AJ, Benfey PhN. Axis formation and polarity in plants. Genetics and Development 11 : 405-409, 2001.
  • Polevoi VV, Salamatova TS. Fiziologhia rosta i razvitia rastenii. LGU, Leningrad. 237, 1991.
  • Picciarelli P, Ceccarelli N, Paolichi F, Calistri G. Endogenous auxins and embryogenesis in Phaseolus coccineus. Australian Journal of Plant Physiology . 28: 73-78, 2001.
  • Ross JJ, Oneil P. New interactions between classical plant hormones. Trends Plant Sci 6: 2-4, 2001.
  • Ross JJ, Oneil P, Wolbang CM, Symons GM, Reid JB. Auxin-gibberellin interactions and their role in plant growth. J. Plant Growth Regul. 20: 346-353, 2002.
  • Sabatini S, Beis D, Wolkenfelt H. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 99: 463-472, 1999.
  • Scher JL, Holbrook NM, Silk WK. Temporal and spatial pattern of twining force and lignification in stems of Ipomoea purpurea. Planta. 213. 2: 192-198, 2001.
  • Steinman T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G. Coordinated polar localization of auxin efflux carrier PIN 1 by GNOM ARF GEF. Science. 286: 316-318, 1999.
  • Sterling TM, Hall IS. Mechanism of action of natural auxins and the auxinic herbicides. In: Burtom ID, Kuhr J. (Eds.) Herbicide Activity Toxicology. Biochemistry and Molecular Biology, Amsterdam. 111-141, 1997.
  • Thimann, KV. Plant growth substances: Past, present and future. Ann.Rev. Plant Physiol. 14: 1-18, 1963.
  • Vranceanu AV. Masuri hotaratoare pentru obtinerea productiilor mari de floarea-soarelui. Poductie vegetala-cereale si plante tehnice. 2: 13-18, 1975.