Patojenik Bakteri Algılama İçin Sarj Tabanlı Kapasitans Ölçümü Kullanarak Nano-Amplifikasyon Stratejisi

Amaç: Bu çalışma, patojenik hastalık gibi klinik ve sağlık uygulamalarında tespit seviyesini arttırmak ve prob pedlerinin sayısını azaltmak için MultiLab-On-Single-Chip (MLoC) sistemi mikro imalatı için bir nano-amplifi kasyon stratejisi sunmaktadır.Materyal veMetod:Uygulama malzemesi katkılı silikon, Şarj bazlı kapasitans ölçüm (CBCM) tekniği, 350 nm teknolojisi ile Tamamlayıcı Metal Oksit-Yarıiletken(CMOS) tekniği kullandı. Algılayıcı kapasitöre uygulanan, ancak referans olana uygulanmayan hedefl enen bakterilerin mevcudiyetindeoluşan geçirgenliğin sonucu olan, sistem kapasitansın varyasyonunu tespit etmek ve işlemek için interdijite kapasitör yapısı, yüke bağlıkapasitans ölçüm devresi kullanıldı.Bulgular: Sistem, literatür sonuçlarına göre düşük seviyede bakteriyel konsantrasyon için iyi bir duyarlılık ortaya koymuştur. Devre, 100 aF civarındakapasitans değişikliklerini ölçüyordu. Devrenin çıkışındaki gürültü 78.7µV civarındadır.Tartışma: CMOS biyosensör bazlı şarj bazlı kapasitans ölçüm sistemi, bakteriyel patojenlerin hücre tespiti için test edilmiş ve deneysel olarakdoğrulanmıştır. Fonksiyonel algılama kapasitansı, referans kapasitansı ve ara-yüz devresinin pasifl eştirilmesi de dahil olmak üzere bu türbiyosensör sistemlerinin üç önemli gerekliliği tartışılmıştır. Sistem seri olarak üretilebilen hızlı, düşük güç ve minyatür bir platform sağlar. 

Nano-Amplification Strategy Using Charge-Based Capacitance Measurement for Pathogenic Bacteria Detection

Objective: This work will present a nano-amplifi cation strategy for microfabricating Multi-Lab-On-Single-Chip (MLoC) system to enhance the level ofdetection and also reduced the number of probe pads for clinical and health care applications, such as pathogenic disease.Material andMethod:The Charge-Based Capacitance Measurement (CBCM) technique used Complementary Metal-Oxide-Semiconductor (CMOS) with 350nm technology, the implementation material is doped silicon. The system employs an interdigitated capacitor structure, charge basedcapacitance measurement circuitry to detect and process the variation of the capacitance, which is a function of the permittivity in thepresence of targeted bacteria that is applied to the sensing capacitor but not to the reference one.Findings andResults:The system appeared good sensitivity for low level concentration of bacterial comparing to the literature results. The circuit was measuringthe capacitance changes around 100 aF. The noise at the output of the circuit is around 78.7µV.Conclusion: CMOS biosensor-based charge-based capacitance measurement system has been fabricated, testing and experimentally validated forbacterial pathogens cell detection. Three important requirements of such biosensor systems including functionalized sensing capacitance,passivating the reference capacitance and interface circuit were discussed. The system provides a rapid, low power, and miniaturizedplatform that can be mass-produced.

___

  • A.M., K. and H. A., "Configurable electrodes for capacitive-type sensors and chemical sensors." Sensors Journal IEEE 6(1): 3 – 10, 2006.
  • Bach, R., et al., " Improvements to CBCM (Charge-Based Capacitance Measurement) for Deep Submicron CMOS Technology." Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06) IEEE, 2006.
  • Baxter, L. K., Capacitive Sensors: Design and Applications. USA, John Wiley & Sons, 2000.Abdullah Tashtoush, “Novel Multibiosensors and Biomedical Applications”, AMS2014, Asia Modelling Symposium 2014, 8th International Conference on Mathematical Modelling and Computer Simulation, page: 235-241, September 23-25 2014, Taipei, Taiwan & Kuala Lumpur, Malaysia, ISBN 978-1-4799-6487-1, IEEE © 2014.
  • Abdullah Tashtoush, “CMOS Technology for IC Biosensor and Applications, Multi-Labs-On-Single-Chip, (MLoC)”, ISBN-13: 978-1483646015, ISBN-10: 1483646017, pp. 294, Xlibris Corporation (June 6, 2013), Bloomington, Indiana, USA, 2013.
  • Chen, J. C., et al., An On-Chip Attofarad Interconnect Charge-Based Capacitance Measurement (CBCM) Technique. IEEE, San Francisco, CA, USA, Electron Devices Meeting, 1996. IEDM '96., International, 1996.
  • Du, W. Y. and S. W. Yelich, "Resistive and Capacitive Based Sensing Technologies." Sensors & Transducers Journal 90( Special Issue): 100-116, 2008.
  • Evans, I., et al, "Microelectronic capacitance transducer for particle detection." Sensors Journal IEEE 4(3): 364 – 372, 2004.
  • Gerwen, P. V., et al., " Nanoscaled interdigitated electrode arrays for biochemical sensors." Sensors and Actuators B: Chemical 49(1-2), 1998.
  • Grieshaber, D., et al., "Electrochemical Biosensors-Sensor Principles and Architectures." Sensors & Transducers Journal 8: 1400-1458, 2008.
  • Kruuv, J. and A. D. Keith, " The importance of cell membrane lipids in cryobiology." Cryobiology 12(6): 553, 1975.Kumar, A., "Biosensors Based on Piezoelectric Crystal Detectors: Theory and Application." The Minerals,Metals &Materials Society (JOM-e) 52(10), 2000.
  • Lu, M. S.-C., et al., " CMOS capacitive sensors for ultrasensitive dopamine detection." Elsevier 20th Anniversary World Congress on Biosensors, Glasgow, UK, 2010.Martinsen, O. G., et al., "Non-invasive measurements of post-mortem changes in dielectric properties of haddock muscle– a pilot study." Journal of Food Engineering 43(3): 189-192, 2000.
  • McGaughy, B. W., et al., "A Simple Method for On-Chip Sub-Femto Farad Interconnect Capacitance Measurement." IEEE Electron device letters 18(1), 1997.
  • Ning, Z., et al., Precise Analogue Characterization of MIM Capacitors Using an Improved Charge-Based Capacitance Measurement (CBCM) Technique. Solid-State Device Research Conference, 2005. France, ESSDERC 2005. Proceedings of 35th European: 269-272, 2005.Precision, L., “Capacitive Sensor Operation and Optimization”, TechNote 563 Shoreview Park Rd. St. Paul, MN 55126 Lion Precision, 2009.
  • Rica, R. d. l. (2007). New concept for electrical detection of biomolecules. De Bioquimicai Biologia Molecular. Spain, Autonoma de Barelona. Doctoral: 75, 2007.
  • Rica, R. d. l., et al., "Local detection of enzymatic ion generation with polycrystalline silicon interdigitated electrodes and its application to biosensing." Appl. Phys. Lett. 90(7): 074102, 2007.
  • Rica, R. d. l., et al., " Selective Detection of Live Pathogens via Surface-Confined Electric Field Perturbation on Interdigitated Silicon Transducers." Anal. Chem. 81(10): 3830–3835, 2009.
  • Rica, R. d. l., et al., "Electric preconcentration and detection of latex beads with interdigitated electrodes." Appl. Phys. Lett. 90: 174104, 2007.
  • Serway, R. A. and J. W. Jewett, “Capacitance and dielectrics”, Scotland: Thomson. 2004Sowlati, et al., "High density capacitance structures in submicron CMOS for low power RF applications." ISLPED ’0: 243-246, 2001.
  • Sylvester, D., et al., " Investigation of Interconnect Capacitance Characterization Using Charge-Based Capacitance Measurement (CBCM) Technique and Three-Dimensional Simulation." IEEE journal of solid-state circuits 33(3), 1998.
  • Wang, S.-W. and M. S.-C. Lu, "CMOS Capacitive Sensors with Sub-um Microelectrodes for Biosensing Applications." IEEE Sensors Journal 10: 991-996, 2010.
  • Ward, B., et al., “Test Structure and Method for Capacitance Extraction in Multi-Conductor Systems”, Kobe: 189-193, 2001.
  • Wu, J., et al., "Biomedical and clinical applications of immunoassays and immunosensors for tumor markers." TrAC Trends in Analytical Chemistry 26(7): 679-688, 2007.
  • Yang, L., et al., " Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7." Anal. Chem. 76: 1107-1113, 2004.