Mikrobiyota ve Kanser
Kanser, önemli bir halk sağlığı sorunudur. Günümüzde, onkoloji alanındaki çok önemli gelişmelere rağmen halen kanser küratif hastalıklar kategorisinde değildir. Ancak, kompleks karsinogenez aşamalarında rol oynayan faktörlerin saptanması ile bu yolda önemli adımlar atılmaktadır. İnsan Mikrobiyota projesi kapsamında son dönemde elde edilen veriler, vücudumuzun epitelyal yüzeylerinde yaşayan kommensal mikroorganizma türlerinin bu süreçte aktif rol aldığını, aynı zamanda kanser tedavisine verilen kişisel yanıtlar ve toksisite ile de ilişkili olduğunu göstermiştir. Sonuç olarak, kanser oluşumu ve tedavisi aşamalarında anahtar role sahip major bir faktörün daha ortaya çıkarılması, kansere bağlı kişisel, toplumsal ve ekonomik kayıpları azaltacaktır. Biz, bu derlemede, yakın zamanda yapılan çalışmalardan elde edilen verilere dayanılarak, Mikrobiyotanın, karsinogenezdeki rolünü ve kanser tedavilerine yanıt ve toksisite üzerine etkilerini değerlendirmeyi amaçladık.
Microbiota and Cancer
Cancer is a major public health problem. Today, despite the very important developments in oncology, cancer is still not in the category of curative diseases. However, signifi cant steps are being taken in this direction by the identifi cation of factors that play a role in the stages of complex carcinogenesis. Recent data from the human microbiology project have shown that commensal microorganism species living on the epithelial surfaces of the body play an active role in this process and are also associated with personal responses to cancer treatment and toxicity. As a result, further exposure of a major factor with key roles in cancer development and treatment stages will reduce personal, social and economic losses associated with cancer. We aimed to assess the role of microbiota in carcinogenesis and their effects on response to cancer treatments and toxicity, based on the data obtained from recent studies in this review.
___
- 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A.
Global cancer statistics, 2012. CA: a cancer journal for clinicians.
2015;65(2):87-108.
- 2. Xu Z, Knight R. Dietary effects on human gut microbiome diversity.
The British journal of nutrition. 2015;113 Suppl:S1-5.
- 3. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The
role of the microbiota in infl ammation, carcinogenesis, and cancer
therapy. European journal of immunology. 2015;45(1):17-31.
- 4. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan
TG. Minireview: Gut microbiota: the neglected endocrine organ.
Molecular endocrinology (Baltimore, Md). 2014;28(8):1221-38.
- 5. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota
in human health and disease: the impact of probiotics. Genes &
nutrition. 2011;6(3):209-40.
- 6. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von
Haehling S, et al. Altered intestinal function in patients with chronic
heart failure. Journal of the American College of Cardiology.
2007;50(16):1561-9.
- 7. Fuentealba C, Figuerola F, Estévez AM, Bastías JM, Muñoz O.
Bioaccessibility of lignans from fl axseed (Linum usitatissimum
L.) determined by singleβbatch in vitro simulation of the
digestive process. Journal of the science of food and agriculture.
2014;94(9):1729-38.
- 8. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al.
Global burden of cancers attributable to infections in 2008: a review
and synthetic analysis. The Lancet Oncology. 2012;13(6):607-15.
- 9. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight
R, Gordon JI. The human microbiome project. Nature.
2007;449(7164):804-10.
- 10. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer
therapy. Nature reviews Cancer. 2017;17(5):271-85.
- 11. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in
cancer development and therapy. CA: a cancer journal for clinicians.
2017;67(4):326-44.
- 12. Belkaid Y, Hand TW. Role of the microbiota in immunity and
infl ammation. Cell. 2014;157(1):121-41.
- 13. De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M.
Nutritional Keys for Intestinal Barrier Modulation. Frontiers in
immunology. 2015;6:612.
- 14. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier
function and immune homeostasis. Nature reviews Immunology.
2014;14(3):141-53.
- 15. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al.
Activation of Gpr109a, receptor for niacin and the commensal
metabolite butyrate, suppresses colonic infl ammation and
carcinogenesis. Immunity. 2014;40(1):128-39.
- 16. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell host &
microbe. 2011;10(4):324-35.
- 17. Goldszmid RS, Trinchieri G. The price of immunity. Nature
immunology. 2012;13(10):932-8.
- 18. Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, et al.
Analysis of gut microbial regulation of host gene expression along
the length of the gut and regulation of gut microbial ecology through
MyD88. Gut. 2011:gutjnl-2011-301104.
- 19. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y
M, et al. The microbial metabolites, short-chain fatty acids, regulate
colonic Treg cell homeostasis. Science. 2013;341(6145):569-73.
- 20. Kalina U, Koyama N, Hosoda T, Nuernberger H, Sato K, Hoelzer D,
et al. Enhanced production of ILβ18 in butyrateβtreated intestinal
epithelium by stimulation of the proximal promoter region.
European journal of immunology. 2002;32(9):2635-43.
- 21. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai
RM, et al. MyD88-mediated signaling prevents development of
adenocarcinomas of the colon: role of interleukin 18. The Journal
of experimental medicine. 2010;207(8):1625-36.
- 22. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and
colitis-associated colorectal cancer. Nature reviews Immunology.
2010;11(1):9.
- 23. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang J-P,
Brown EM, et al. NLRP6 infl ammasome orchestrates the colonic
host-microbial interface by regulating goblet cell mucus secretion.
Cell. 2014;156(5):1045-59.
- 24. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis
factor prevents intestinal infl ammatory disease. Nature.
2008;453(7195):620.
- 25. Belkaid Y, Naik S. Compartmentalized and systemic control of tissue
immunity by commensals. Nature immunology. 2013;14(7):646-
53.
- 26. Chervonsky AV. Microbiota and autoimmunity. Cold Spring Harbor
perspectives in biology. 2013;5(3):a007294.
- 27. Bongers G, Pacer ME, Geraldino TH, Chen L, He Z, Hashimoto
D, et al. Interplay of host microbiota, genetic perturbations, and
infl ammation promotes local development of intestinal neoplasms
in mice. Journal of Experimental Medicine. 2014;211(3):457-72.
- 28. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell
host & microbe. 2014;15(3):317-28.
- 29. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen
GY, et al. The gut microbiome modulates colon tumorigenesis.
MBio. 2013;4(6):e00692-13.
- 30. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A,
Suarez A, et al. Microbial mucosal colonic shifts associated with the
development of colorectal cancer reveal the presence of different
bacterial and archaeal biomarkers. Journal of gastroenterology.
2015;50(2):167-79.
- 31. Poutahidis T, Cappelle K, Levkovich T, Lee C-W, Doulberis M, Ge
Z, et al. Pathogenic intestinal bacteria enhance prostate cancer
development via systemic activation of immune cells in mice. PloS
one. 2013;8(8):e73933.
- 32. Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, et
al. Intestinal bacteria modify lymphoma incidence and latency
by affecting systemic infl ammatory state, oxidative stress, and
leukocyte genotoxicity. Cancer research. 2013;73(14):4222-32.
- 33. Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The
role of tumour necrosis factor-β and tumour necrosis factor receptor
signalling in infl ammation-associated systemic genotoxicity.
Mutagenesis. 2011;27(1):77-86.
- 34. Sergentanis TN, Zagouri F, Zografos GC. Is antibiotic use a risk
factor for breast cancer? A metaβanalysis. Pharmacoepidemiology
and drug safety. 2010;19(11):1101-7.
- 35. Kim Y-G, Udayanga KGS, Totsuka N, Weinberg JB, Núñez G, Shibuya
A. Gut dysbiosis promotes M2 macrophage polarization and allergic
airway infl ammation via fungi-induced PGE 2. Cell host & microbe.
2014;15(1):95-102.
- 36. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut
microbiome. Nature. 2014;505(7484):559-63.
- 37. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer
research. 2008;68(21):8643-53.
- 38. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten
RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science.
2013;342(6161):967-70.
- 39. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The
role of the microbiota in infl ammation, carcinogenesis, and cancer
therapy. European journal of immunology. 2015;45(1):17-31.
- 40. Carmody RN, Turnbaugh PJ. Host-microbial interactions in the
metabolism of therapeutic and diet-derived xenobiotics. The Journal
of clinical investigation. 2014;124(10):4173.
- 41. Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of
xenobiotic metabolism. Pharmacological research. 2013;69(1):21-
31.
- 42. Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson
S. Intestinal microbiota regulate xenobiotic metabolism in the liver.
PloS one. 2009;4(9):e6958.
- 43. Yip LY, Chan ECY. Investigation of host-gut microbiota modulation
of therapeutic outcome. Drug Metabolism and Disposition.
2015:dmd. 115.063750.
- 44. Fujita K-i, Sparreboom A. Pharmacogenetics of irinotecan
disposition and toxicity: a review. Current clinical pharmacology.
2010;5(3):209-17.
- 45. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe
DM. Faecal microfl ora and β-glucuronidase expression are altered
in an irinotecan-induced diarrhea model in rats. Cancer biology &
therapy. 2008;7(12):1919-25.
- 46. McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ, Ince J,
et al. Phylogenetic distribution of genes encoding ββglucuronidase
activity in human colonic bacteria and the impact of diet on
faecal glycosidase activities. Environmental microbiology.
2012;14(8):1876-87.
- 47. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, et al.
Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.
Science. 2010;330(6005):831-5.
- 48. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO,
Reid G, et al. Local bacteria affect the effi cacy of chemotherapeutic
drugs. Scientifi c reports. 2015;5.
- 49. Selwyn FP, Cui JY, Klaassen CD. RNA-Seq quantifi cation of hepatic
drug processing genes in germ-free mice. Drug Metabolism and
Disposition. 2015;43(10):1572-80.
- 50. Gui Q, Lu H, Zhang C, Xu Z, Yang Y. Well-balanced commensal
microbiota contributes to anti-cancer response in a lung cancer
mouse model. Genet Mol Res. 2015;14(2):5642-51.
- 51. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli
F, et al. Immunogenic death of colon cancer cells treated with
oxaliplatin. Oncogene. 2010;29(4):482.
- 52. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C,
Poirier-Colame V, et al. Enterococcus hirae and Barnesiella
intestinihominis facilitate cyclophosphamide-induced therapeutic
immunomodulatory effects. Immunity. 2016;45(4):931-43.
- 53. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D,
et al. The intestinal microbiota modulates the anticancer immune
effects of cyclophosphamide. Science. 2013;342(6161):971-6.
- 54. Rigby RJ, Carr J, Orgel K, King SL, Lund PK, Dekaney CM. Intestinal
bacteria are necessary for doxorubicin-induced intestinal damage
but not for doxorubicin-induced apoptosis. Gut microbes.
2016;7(5):414-23.
- 55. Nigro G, Rossi R, Commere P-H, Jay P, Sansonetti PJ. The cytosolic
bacterial peptidoglycan sensor Nod2 affords stem cell protection
and links microbes to gut epithelial regeneration. Cell host &
microbe. 2014;15(6):792-8.
- 56. Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S,
Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live
lactobacillus acidophilus plus bifi dobacterium bifi dum in prophylaxis
of diarrhea during radiotherapy in cervical cancer patients. Radiation
Oncology. 2010;5(1):31.
- 57. Cario E. Toll-like receptors in the pathogenesis of chemotherapyinduced
gastrointestinal toxicity. Current opinion in supportive and
palliative care. 2016;10(2):157-64.
- 58. Cvan Trobec K, Kerec Kos M, Trontelj J, Grabnar I, Tschirner A, Palus
S, et al. Infl uence of cancer cachexia on drug liver metabolism and
renal elimination in rats. Journal of cachexia, sarcopenia and muscle.
2015;6(1):45-52.
- 59. Yeh K-Y, Wang H-M, Chang JW-C, Huang J-S, Lai C-H, Lan Y-J, et
al. Omega-3 fatty acid-, micronutrient-, and probiotic-enriched
nutrition helps body weight stabilization in head and neck cancer
cachexia. Oral surgery, oral medicine, oral pathology and oral
radiology. 2013;116(1):41-8.
- 60. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour
microenvironment after radiotherapy: mechanisms of resistance
and recurrence. Nature reviews Cancer. 2015;15(7):409.
- 61. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al.
Ionizing radiation inhibition of distant untreated tumors (abscopal
effect) is immune mediated. International Journal of Radiation
Oncology* Biology* Physics. 2004;58(3):862-70.
- 62. Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, et
al. Lactobacilli modulate epithelial cytoprotection through the Nrf2
pathway. Cell reports. 2015;12(8):1217-25.
- 63. Delia P, Sansotta G, Donato V, Frosina P, Messina G, De Renzis C,
et al. Use of probiotics for prevention of radiation-induced diarrhea.
World journal of gastroenterology: WJG. 2007;13(6):912.
- 64. Ishihara H, Tanaka I, Yakumaru H, Chikamori M, Ishihara F,
Tanaka M, et al. Circadian transitions in radiation dose-dependent
augmentation of mRNA levels for DNA damage-induced genes
elicited by accurate real-time RT-PCR quantifi cation. Journal of
radiation research. 2010;51(3):265-75.
- 65. Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal
epithelium is orchestrated by the circadian clock and microbiota
cues transduced by TLRs. Cell. 2013;153(4):812-27.
- 66. Couzin-Frankel J. Cancer immunotherapy. American Association for
the Advancement of Science; 2013.
- 67. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels
K, Earley ZM, et al. Commensal Bifi dobacterium promotes
antitumor immunity and facilitates anti–PD-L1 effi cacy. Science.
2015;350(6264):1084-9.
- 68. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M,
Cassard L, et al. Microbial translocation augments the function of
adoptively transferred self/tumor-specifi c CD8+ T cells via TLR4
signaling. Journal of Clinical Investigation. 2007;117(8):2197.
- 69. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U,
et al. Adoptive cell therapy for patients with metastatic melanoma:
evaluation of intensive myeloablative chemoradiation preparative
regimens. Journal of Clinical Oncology. 2008;26(32):5233-9.
- 70. Sharma P, Allison JP. The future of immune checkpoint therapy.
Science. 2015;348(6230):56-61.
- 71. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C,
et al. Anticancer immunotherapy by CTLA-4 blockade relies on the
gut microbiota. Science. 2015;350(6264):1079-84.
- 72. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated
with colorectal cancer. Frontiers in microbiology. 2015;6.
- 73. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al.
Potential of fecal microbiota for earlyβstage detection of colorectal
cancer. Molecular systems biology. 2014;10(11):766.